Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEA] Add support for SDDMM by wrapping the cusparseSDDMM (#2067) #2067

Merged
merged 5 commits into from
Jan 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion cpp/bench/prims/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# =============================================================================
# Copyright (c) 2022-2023, NVIDIA CORPORATION.
# Copyright (c) 2022-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
Expand Down Expand Up @@ -117,6 +117,7 @@ if(BUILD_PRIMS_BENCH)
bench/prims/linalg/reduce_cols_by_key.cu
bench/prims/linalg/reduce_rows_by_key.cu
bench/prims/linalg/reduce.cu
bench/prims/linalg/sddmm.cu
bench/prims/main.cpp
)

Expand Down
275 changes: 275 additions & 0 deletions cpp/bench/prims/linalg/sddmm.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <common/benchmark.hpp>
#include <cusparse_v2.h>
#include <raft/core/device_resources.hpp>
#include <raft/core/resource/cublas_handle.hpp>
#include <raft/distance/distance.cuh>
#include <raft/distance/distance_types.hpp>
#include <raft/random/rng.cuh>
#include <raft/sparse/linalg/sddmm.hpp>
#include <raft/util/itertools.hpp>

#include <raft/core/resource/cuda_stream.hpp>
#include <raft/core/resources.hpp>

#include <random>
#include <sstream>
#include <vector>

namespace raft::bench::linalg {

template <typename ValueType>
struct SDDMMBenchParams {
size_t m;
size_t k;
size_t n;
float sparsity;
bool transpose_a;
bool transpose_b;
ValueType alpha = 1.0;
ValueType beta = 0.0;
};

enum Alg { SDDMM, Inner };

template <typename ValueType>
inline auto operator<<(std::ostream& os, const SDDMMBenchParams<ValueType>& params) -> std::ostream&
{
os << " m*k*n=" << params.m << "*" << params.k << "*" << params.n
<< "\tsparsity=" << params.sparsity << "\ttrans_a=" << (params.transpose_a ? "T" : "F")
<< " trans_b=" << (params.transpose_b ? "T" : "F");
return os;
}

template <typename ValueType,
typename LayoutPolicyA = row_major,
typename LayoutPolicyB = col_major,
const int SDDMMorInner = Alg::SDDMM,
typename IndexType = int64_t>
struct SDDMMBench : public fixture {
SDDMMBench(const SDDMMBenchParams<ValueType>& p)
: fixture(true),
params(p),
handle(stream),
a_data_d(0, stream),
b_data_d(0, stream),
c_indptr_d(0, stream),
c_indices_d(0, stream),
c_data_d(0, stream),
c_dense_data_d(0, stream)
{
a_data_d.resize(params.m * params.k, stream);
b_data_d.resize(params.k * params.n, stream);

raft::random::RngState rng(2024ULL);
raft::random::uniform(
handle, rng, a_data_d.data(), params.m * params.k, ValueType(-1.0), ValueType(1.0));
raft::random::uniform(
handle, rng, b_data_d.data(), params.k * params.n, ValueType(-1.0), ValueType(1.0));

std::vector<bool> c_dense_data_h(params.m * params.n);

c_true_nnz = create_sparse_matrix(c_dense_data_h);
std::vector<ValueType> values(c_true_nnz);
std::vector<IndexType> indices(c_true_nnz);
std::vector<IndexType> indptr(params.m + 1);

c_data_d.resize(c_true_nnz, stream);
c_indptr_d.resize(params.m + 1, stream);
c_indices_d.resize(c_true_nnz, stream);

if (SDDMMorInner == Alg::Inner) { c_dense_data_d.resize(params.m * params.n, stream); }

convert_to_csr(c_dense_data_h, params.m, params.n, values, indices, indptr);
RAFT_EXPECTS(c_true_nnz == c_indices_d.size(),
"Something wrong. The c_true_nnz != c_indices_d.size()!");

update_device(c_data_d.data(), values.data(), c_true_nnz, stream);
update_device(c_indices_d.data(), indices.data(), c_true_nnz, stream);
update_device(c_indptr_d.data(), indptr.data(), params.m + 1, stream);
}

void convert_to_csr(std::vector<bool>& matrix,
IndexType rows,
IndexType cols,
std::vector<ValueType>& values,
std::vector<IndexType>& indices,
std::vector<IndexType>& indptr)
{
IndexType offset_indptr = 0;
IndexType offset_values = 0;
indptr[offset_indptr++] = 0;

for (IndexType i = 0; i < rows; ++i) {
for (IndexType j = 0; j < cols; ++j) {
if (matrix[i * cols + j]) {
values[offset_values] = static_cast<ValueType>(1.0);
indices[offset_values] = static_cast<IndexType>(j);
offset_values++;
}
}
indptr[offset_indptr++] = static_cast<IndexType>(offset_values);
}
}

size_t create_sparse_matrix(std::vector<bool>& matrix)
{
size_t total_elements = static_cast<size_t>(params.m * params.n);
size_t num_ones = static_cast<size_t>((total_elements * 1.0f) * params.sparsity);
size_t res = num_ones;

for (size_t i = 0; i < total_elements; ++i) {
matrix[i] = false;
}

std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, total_elements - 1);

while (num_ones > 0) {
size_t index = dis(gen);

if (matrix[index] == false) {
matrix[index] = true;
num_ones--;
}
}
return res;
}

~SDDMMBench() {}

void run_benchmark(::benchmark::State& state) override
{
std::ostringstream label_stream;
label_stream << params;
state.SetLabel(label_stream.str());

auto a = raft::make_device_matrix_view<const ValueType, IndexType, LayoutPolicyA>(
a_data_d.data(),
(!params.transpose_a ? params.m : params.k),
(!params.transpose_a ? params.k : params.m));

auto b = raft::make_device_matrix_view<const ValueType, IndexType, LayoutPolicyB>(
b_data_d.data(),
(!params.transpose_b ? params.k : params.n),
(!params.transpose_b ? params.n : params.k));

auto c_structure = raft::make_device_compressed_structure_view<int64_t, int64_t, int64_t>(
c_indptr_d.data(),
c_indices_d.data(),
params.m,
params.n,
static_cast<IndexType>(c_indices_d.size()));

auto c = raft::make_device_csr_matrix_view<ValueType>(c_data_d.data(), c_structure);
raft::resource::get_cusparse_handle(handle);

resource::sync_stream(handle);

auto op_a = params.transpose_a ? raft::linalg::Operation::TRANSPOSE
: raft::linalg::Operation::NON_TRANSPOSE;
auto op_b = params.transpose_b ? raft::linalg::Operation::TRANSPOSE
: raft::linalg::Operation::NON_TRANSPOSE;

raft::sparse::linalg::sddmm(handle,
a,
b,
c,
op_a,
op_b,
raft::make_host_scalar_view<ValueType>(&params.alpha),
raft::make_host_scalar_view<ValueType>(&params.beta));
resource::sync_stream(handle);

loop_on_state(state, [this, &a, &b, &c, &op_a, &op_b]() {
if (SDDMMorInner == Alg::SDDMM) {
raft::sparse::linalg::sddmm(handle,
a,
b,
c,
op_a,
op_b,
raft::make_host_scalar_view<ValueType>(&params.alpha),
raft::make_host_scalar_view<ValueType>(&params.beta));
resource::sync_stream(handle);
} else {
raft::distance::pairwise_distance(handle,
a_data_d.data(),
b_data_d.data(),
c_dense_data_d.data(),
static_cast<int>(params.m),
static_cast<int>(params.n),
static_cast<int>(params.k),
raft::distance::DistanceType::InnerProduct,
std::is_same_v<LayoutPolicyA, row_major>);
resource::sync_stream(handle);
}
});
}

private:
const raft::device_resources handle;
SDDMMBenchParams<ValueType> params;

rmm::device_uvector<ValueType> a_data_d;
rmm::device_uvector<ValueType> b_data_d;
rmm::device_uvector<ValueType> c_dense_data_d;

size_t c_true_nnz = 0;
rmm::device_uvector<IndexType> c_indptr_d;
rmm::device_uvector<IndexType> c_indices_d;
rmm::device_uvector<ValueType> c_data_d;
};

template <typename ValueType>
static std::vector<SDDMMBenchParams<ValueType>> getInputs()
{
std::vector<SDDMMBenchParams<ValueType>> param_vec;
struct TestParams {
bool transpose_a;
bool transpose_b;
size_t m;
size_t k;
size_t n;
float sparsity;
};

const std::vector<TestParams> params_group =
raft::util::itertools::product<TestParams>({false, true},
{false, true},
{size_t(10), size_t(1024)},
{size_t(128), size_t(1024)},
{size_t(1024 * 1024)},
{0.01f, 0.1f, 0.2f, 0.5f});

param_vec.reserve(params_group.size());
for (TestParams params : params_group) {
param_vec.push_back(SDDMMBenchParams<ValueType>(
{params.m, params.k, params.n, params.sparsity, params.transpose_a, params.transpose_b}));
}
return param_vec;
}

RAFT_BENCH_REGISTER((SDDMMBench<float, row_major, col_major, Alg::SDDMM>), "", getInputs<float>());
RAFT_BENCH_REGISTER((SDDMMBench<float, col_major, row_major, Alg::SDDMM>), "", getInputs<float>());
RAFT_BENCH_REGISTER((SDDMMBench<float, row_major, row_major, Alg::SDDMM>), "", getInputs<float>());
RAFT_BENCH_REGISTER((SDDMMBench<float, col_major, col_major, Alg::SDDMM>), "", getInputs<float>());

RAFT_BENCH_REGISTER((SDDMMBench<float, row_major, col_major, Alg::Inner>), "", getInputs<float>());

} // namespace raft::bench::linalg
4 changes: 2 additions & 2 deletions cpp/include/raft/distance/detail/kernels/gram_matrix.cuh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
* Copyright (c) 2022-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -23,7 +23,7 @@
#include <raft/distance/distance_types.hpp>
// #include <raft/sparse/detail/cusparse_wrappers.h>
#include <raft/sparse/distance/distance.cuh>
#include <raft/sparse/linalg/spmm.cuh>
#include <raft/sparse/linalg/spmm.hpp>

#include <raft/linalg/detail/cublas_wrappers.hpp>
#include <raft/linalg/gemm.cuh>
Expand Down
9 changes: 8 additions & 1 deletion cpp/include/raft/linalg/linalg_types.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
* Copyright (c) 2022-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -32,4 +32,11 @@ enum class Apply { ALONG_ROWS, ALONG_COLUMNS };
*/
enum class FillMode { UPPER, LOWER };

/**
* @brief Enum for this type indicates which operation is applied to the related input (e.g. sparse
* matrix, or vector).
*
*/
enum class Operation { NON_TRANSPOSE, TRANSPOSE };

} // end namespace raft::linalg
Loading