Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add IVF-Flat C++ example #1828

Merged
merged 13 commits into from
Sep 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions cpp/template/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -34,5 +34,9 @@ rapids_cpm_init()
include(cmake/thirdparty/get_raft.cmake)

# -------------- compile tasks ----------------- #
add_executable(TEST_RAFT src/test_vector_search.cu)
target_link_libraries(TEST_RAFT PRIVATE raft::raft raft::compiled)
add_executable(CAGRA_EXAMPLE src/cagra_example.cu)
target_link_libraries(CAGRA_EXAMPLE PRIVATE raft::raft raft::compiled)

add_executable(IVF_FLAT_EXAMPLE src/ivf_flat_example.cu)
target_link_libraries(IVF_FLAT_EXAMPLE PRIVATE raft::raft raft::compiled)

90 changes: 90 additions & 0 deletions cpp/template/src/cagra_example.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cstdint>
#include <raft/core/device_mdarray.hpp>
#include <raft/core/device_resources.hpp>
#include <raft/neighbors/cagra.cuh>
#include <raft/random/make_blobs.cuh>

#include <rmm/mr/device/device_memory_resource.hpp>
#include <rmm/mr/device/pool_memory_resource.hpp>

#include "common.cuh"

void cagra_build_search_simple(raft::device_resources const& dev_resources,
raft::device_matrix_view<const float, int64_t> dataset,
raft::device_matrix_view<const float, int64_t> queries)
{
using namespace raft::neighbors;

int64_t topk = 12;
int64_t n_queries = queries.extent(0);

// create output arrays
auto neighbors = raft::make_device_matrix<uint32_t>(dev_resources, n_queries, topk);
auto distances = raft::make_device_matrix<float>(dev_resources, n_queries, topk);

// use default index parameters
cagra::index_params index_params;

std::cout << "Building CAGRA index (search graph)" << std::endl;
auto index = cagra::build<float, uint32_t>(dev_resources, index_params, dataset);

std::cout << "CAGRA index has " << index.size() << " vectors" << std::endl;
std::cout << "CAGRA graph has degree " << index.graph_degree() << ", graph size ["
<< index.graph().extent(0) << ", " << index.graph().extent(1) << "]" << std::endl;

// use default search parameters
cagra::search_params search_params;
// search K nearest neighbors
cagra::search<float, uint32_t>(
dev_resources, search_params, index, queries, neighbors.view(), distances.view());

// The call to ivf_flat::search is asynchronous. Before accessing the data, sync by calling
// raft::resource::sync_stream(dev_resources);

print_results(dev_resources, neighbors.view(), distances.view());
}

int main()
{
raft::device_resources dev_resources;

// Set pool memory resource with 1 GiB initial pool size. All allocations use the same pool.
rmm::mr::pool_memory_resource<rmm::mr::device_memory_resource> pool_mr(
rmm::mr::get_current_device_resource(), 1024 * 1024 * 1024ull);
rmm::mr::set_current_device_resource(&pool_mr);

// Alternatively, one could define a pool allocator for temporary arrays (used within RAFT
// algorithms). In that case only the internal arrays would use the pool, any other allocation
// uses the default RMM memory resource. Here is how to change the workspace memory resource to
// a pool with 2 GiB upper limit.
// raft::resource::set_workspace_to_pool_resource(dev_resources, 2 * 1024 * 1024 * 1024ull);

// Create input arrays.
int64_t n_samples = 10000;
int64_t n_dim = 90;
int64_t n_queries = 10;
auto dataset = raft::make_device_matrix<float, int64_t>(dev_resources, n_samples, n_dim);
auto queries = raft::make_device_matrix<float, int64_t>(dev_resources, n_queries, n_dim);
generate_dataset(dev_resources, dataset.view(), queries.view());

// Simple build and search example.
cagra_build_search_simple(dev_resources,
raft::make_const_mdspan(dataset.view()),
raft::make_const_mdspan(queries.view()));
}
95 changes: 95 additions & 0 deletions cpp/template/src/common.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cstdint>
#include <raft/core/device_mdarray.hpp>
#include <raft/core/device_resources.hpp>
#include <raft/core/resource/thrust_policy.hpp>
#include <raft/matrix/copy.cuh>
#include <raft/random/make_blobs.cuh>
#include <raft/random/sample_without_replacement.cuh>
#include <raft/util/cudart_utils.hpp>

#include <thrust/copy.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>

// Fill dataset and queries with synthetic data.
void generate_dataset(raft::device_resources const& dev_resources,
raft::device_matrix_view<float, int64_t> dataset,
raft::device_matrix_view<float, int64_t> queries)
{
auto labels = raft::make_device_vector<int64_t, int64_t>(dev_resources, dataset.extent(0));
raft::random::make_blobs(dev_resources, dataset, labels.view());
raft::random::RngState r(1234ULL);
raft::random::uniform(dev_resources,
r,
raft::make_device_vector_view(queries.data_handle(), queries.size()),
-1.0f,
1.0f);
}

// Copy the results to host and print a few samples
template <typename IdxT>
void print_results(raft::device_resources const& dev_resources,
raft::device_matrix_view<IdxT, int64_t> neighbors,
raft::device_matrix_view<float, int64_t> distances)
{
int64_t topk = neighbors.extent(1);
auto neighbors_host = raft::make_host_matrix<IdxT, int64_t>(neighbors.extent(0), topk);
auto distances_host = raft::make_host_matrix<float, int64_t>(distances.extent(0), topk);

cudaStream_t stream = raft::resource::get_cuda_stream(dev_resources);

raft::copy(neighbors_host.data_handle(), neighbors.data_handle(), neighbors.size(), stream);
raft::copy(distances_host.data_handle(), distances.data_handle(), distances.size(), stream);

// The calls to RAFT algorithms and raft::copy is asynchronous.
// We need to sync the stream before accessing the data.
raft::resource::sync_stream(dev_resources, stream);

for (int query_id = 0; query_id < 2; query_id++) {
std::cout << "Query " << query_id << " neighbor indices: ";
raft::print_host_vector("", &neighbors_host(query_id, 0), topk, std::cout);
std::cout << "Query " << query_id << " neighbor distances: ";
raft::print_host_vector("", &distances_host(query_id, 0), topk, std::cout);
}
}

/** Subsample the dataset to create a training set*/
raft::device_matrix<float, int64_t> subsample(
raft::device_resources const& dev_resources,
raft::device_matrix_view<const float, int64_t> dataset,
raft::device_vector_view<const int64_t, int64_t> data_indices,
float fraction)
{
int64_t n_samples = dataset.extent(0);
int64_t n_dim = dataset.extent(1);
int64_t n_train = n_samples * fraction;
auto trainset = raft::make_device_matrix<float, int64_t>(dev_resources, n_train, n_dim);

int seed = 137;
raft::random::RngState rng(seed);
auto train_indices = raft::make_device_vector<int64_t>(dev_resources, n_train);

raft::random::sample_without_replacement(
dev_resources, rng, data_indices, std::nullopt, train_indices.view(), std::nullopt);

raft::matrix::copy_rows(
dev_resources, dataset, trainset.view(), raft::make_const_mdspan(train_indices.view()));

return trainset;
}
160 changes: 160 additions & 0 deletions cpp/template/src/ivf_flat_example.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cstdint>
#include <optional>
#include <raft/core/device_mdarray.hpp>
#include <raft/core/device_resources.hpp>
#include <raft/core/resource/thrust_policy.hpp>
#include <raft/neighbors/ivf_flat.cuh>
#include <raft/util/cudart_utils.hpp>

#include <rmm/mr/device/device_memory_resource.hpp>
#include <rmm/mr/device/pool_memory_resource.hpp>

#include <thrust/copy.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>

#include "common.cuh"

void ivf_flat_build_search_simple(raft::device_resources const& dev_resources,
raft::device_matrix_view<const float, int64_t> dataset,
raft::device_matrix_view<const float, int64_t> queries)
{
using namespace raft::neighbors;

ivf_flat::index_params index_params;
index_params.n_lists = 1024;
index_params.kmeans_trainset_fraction = 0.1;
index_params.metric = raft::distance::DistanceType::L2Expanded;

std::cout << "Building IVF-Flat index" << std::endl;
auto index = ivf_flat::build(dev_resources, index_params, dataset);

std::cout << "Number of clusters " << index.n_lists() << ", number of vectors added to index "
<< index.size() << std::endl;

// Create output arrays.
int64_t topk = 10;
int64_t n_queries = queries.extent(0);
auto neighbors = raft::make_device_matrix<int64_t>(dev_resources, n_queries, topk);
auto distances = raft::make_device_matrix<float>(dev_resources, n_queries, topk);

// Set search parameters.
ivf_flat::search_params search_params;
search_params.n_probes = 50;

// Search K nearest neighbors for each of the queries.
ivf_flat::search(
dev_resources, search_params, index, queries, neighbors.view(), distances.view());

// The call to ivf_flat::search is asynchronous. Before accessing the data, sync by calling
// raft::resource::sync_stream(dev_resources);

print_results(dev_resources, neighbors.view(), distances.view());
}

void ivf_flat_build_extend_search(raft::device_resources const& dev_resources,
tfeher marked this conversation as resolved.
Show resolved Hide resolved
raft::device_matrix_view<const float, int64_t> dataset,
raft::device_matrix_view<const float, int64_t> queries)
{
using namespace raft::neighbors;

// Define dataset indices.
auto data_indices = raft::make_device_vector<int64_t, int64_t>(dev_resources, dataset.extent(0));
thrust::counting_iterator<int64_t> first(0);
thrust::device_ptr<int64_t> ptr(data_indices.data_handle());
tfeher marked this conversation as resolved.
Show resolved Hide resolved
thrust::copy(
raft::resource::get_thrust_policy(dev_resources), first, first + dataset.extent(0), ptr);

// Sub-sample the dataset to create a training set.
auto trainset =
subsample(dev_resources, dataset, raft::make_const_mdspan(data_indices.view()), 0.1);

ivf_flat::index_params index_params;
index_params.n_lists = 100;
index_params.metric = raft::distance::DistanceType::L2Expanded;
index_params.add_data_on_build = false;

std::cout << "\nRun k-means clustering using the training set" << std::endl;
auto index =
ivf_flat::build(dev_resources, index_params, raft::make_const_mdspan(trainset.view()));

std::cout << "Number of clusters " << index.n_lists() << ", number of vectors added to index "
<< index.size() << std::endl;

std::cout << "Filling index with the dataset vectors" << std::endl;
index = ivf_flat::extend(dev_resources,
dataset,
std::make_optional(raft::make_const_mdspan(data_indices.view())),
index);

std::cout << "Index size after addin dataset vectors " << index.size() << std::endl;

// Set search parameters.
ivf_flat::search_params search_params;
search_params.n_probes = 10;

// Create output arrays.
int64_t topk = 10;
int64_t n_queries = queries.extent(0);
auto neighbors = raft::make_device_matrix<int64_t, int64_t>(dev_resources, n_queries, topk);
auto distances = raft::make_device_matrix<float, int64_t>(dev_resources, n_queries, topk);

// Search K nearest neighbors for each queries.
ivf_flat::search(
dev_resources, search_params, index, queries, neighbors.view(), distances.view());

// The call to ivf_flat::search is asynchronous. Before accessing the data, sync using:
// raft::resource::sync_stream(dev_resources);

print_results(dev_resources, neighbors.view(), distances.view());
}

int main()
{
raft::device_resources dev_resources;
tfeher marked this conversation as resolved.
Show resolved Hide resolved

// Set pool memory resource with 1 GiB initial pool size. All allocations use the same pool.
rmm::mr::pool_memory_resource<rmm::mr::device_memory_resource> pool_mr(
rmm::mr::get_current_device_resource(), 1024 * 1024 * 1024ull);
rmm::mr::set_current_device_resource(&pool_mr);

// Alternatively, one could define a pool allocator for temporary arrays (used within RAFT
// algorithms). In that case only the internal arrays would use the pool, any other allocation
// uses the default RMM memory resource. Here is how to change the workspace memory resource to
// a pool with 2 GiB upper limit.
// raft::resource::set_workspace_to_pool_resource(dev_resources, 2 * 1024 * 1024 * 1024ull);

// Create input arrays.
int64_t n_samples = 10000;
int64_t n_dim = 3;
int64_t n_queries = 10;
auto dataset = raft::make_device_matrix<float, int64_t>(dev_resources, n_samples, n_dim);
auto queries = raft::make_device_matrix<float, int64_t>(dev_resources, n_queries, n_dim);
generate_dataset(dev_resources, dataset.view(), queries.view());

// Simple build and search example.
ivf_flat_build_search_simple(dev_resources,
raft::make_const_mdspan(dataset.view()),
raft::make_const_mdspan(queries.view()));

// Build and extend example.
ivf_flat_build_extend_search(dev_resources,
raft::make_const_mdspan(dataset.view()),
raft::make_const_mdspan(queries.view()));
}
Loading