Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ANN: Optimize host-side refine #1651

Merged
merged 5 commits into from
Jul 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions cpp/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -342,6 +342,9 @@ if(RAFT_COMPILE_LIBRARY)
src/neighbors/detail/ivf_pq_compute_similarity_half_fp8_false.cu
src/neighbors/detail/ivf_pq_compute_similarity_half_fp8_true.cu
src/neighbors/detail/ivf_pq_compute_similarity_half_half.cu
src/neighbors/detail/refine_host_float_float.cpp
src/neighbors/detail/refine_host_int8_t_float.cpp
src/neighbors/detail/refine_host_uint8_t_float.cpp
src/neighbors/detail/selection_faiss_int32_t_float.cu
src/neighbors/detail/selection_faiss_int_double.cu
src/neighbors/detail/selection_faiss_long_float.cu
Expand Down
230 changes: 3 additions & 227 deletions cpp/include/raft/neighbors/detail/refine.cuh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -13,231 +13,7 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

#include <raft/core/device_mdarray.hpp>
#include <raft/core/host_mdspan.hpp>
#include <raft/core/nvtx.hpp>
#include <raft/core/resource/cuda_stream.hpp>
#include <raft/core/resource/thrust_policy.hpp>
#include <raft/core/resources.hpp>
#include <raft/matrix/detail/select_warpsort.cuh>
#include <raft/neighbors/detail/ivf_flat_build.cuh>
#include <raft/neighbors/detail/ivf_flat_interleaved_scan.cuh>
#include <raft/neighbors/detail/ivf_flat_search.cuh>
#include <raft/neighbors/sample_filter_types.hpp>
#include <raft/spatial/knn/detail/ann_utils.cuh>

#include <cstdlib>
#include <omp.h>

#include <thrust/sequence.h>

namespace raft::neighbors::detail {

/** Checks whether the input data extents are compatible. */
template <typename extents_t>
void check_input(extents_t dataset,
extents_t queries,
extents_t candidates,
extents_t indices,
extents_t distances,
distance::DistanceType metric)
{
auto n_queries = queries.extent(0);
auto k = distances.extent(1);

RAFT_EXPECTS(k <= raft::matrix::detail::select::warpsort::kMaxCapacity,
"k must be lest than topk::kMaxCapacity (%d).",
raft::matrix::detail::select::warpsort::kMaxCapacity);

RAFT_EXPECTS(indices.extent(0) == n_queries && distances.extent(0) == n_queries &&
candidates.extent(0) == n_queries,
"Number of rows in output indices, distances and candidates matrices must be equal"
" with the number of rows in search matrix. Expected %d, got %d, %d, and %d",
static_cast<int>(n_queries),
static_cast<int>(indices.extent(0)),
static_cast<int>(distances.extent(0)),
static_cast<int>(candidates.extent(0)));

RAFT_EXPECTS(indices.extent(1) == k,
"Number of columns in output indices and distances matrices must be equal to k");

RAFT_EXPECTS(queries.extent(1) == dataset.extent(1),
"Number of columns must be equal for dataset and queries");

RAFT_EXPECTS(candidates.extent(1) >= k,
"Number of neighbor candidates must not be smaller than k (%d vs %d)",
static_cast<int>(candidates.extent(1)),
static_cast<int>(k));
}

/**
* See raft::neighbors::refine for docs.
*/
template <typename idx_t, typename data_t, typename distance_t, typename matrix_idx>
void refine_device(raft::resources const& handle,
raft::device_matrix_view<const data_t, matrix_idx, row_major> dataset,
raft::device_matrix_view<const data_t, matrix_idx, row_major> queries,
raft::device_matrix_view<const idx_t, matrix_idx, row_major> neighbor_candidates,
raft::device_matrix_view<idx_t, matrix_idx, row_major> indices,
raft::device_matrix_view<distance_t, matrix_idx, row_major> distances,
distance::DistanceType metric = distance::DistanceType::L2Unexpanded)
{
matrix_idx n_candidates = neighbor_candidates.extent(1);
matrix_idx n_queries = queries.extent(0);
matrix_idx dim = dataset.extent(1);
uint32_t k = static_cast<uint32_t>(indices.extent(1));

common::nvtx::range<common::nvtx::domain::raft> fun_scope(
"neighbors::refine(%zu, %u)", size_t(n_queries), uint32_t(n_candidates));

check_input(dataset.extents(),
queries.extents(),
neighbor_candidates.extents(),
indices.extents(),
distances.extents(),
metric);

// The refinement search can be mapped to an IVF flat search:
// - We consider that the candidate vectors form a cluster, separately for each query.
// - In other words, the n_queries * n_candidates vectors form n_queries clusters, each with
// n_candidates elements.
// - We consider that the coarse level search is already performed and assigned a single cluster
// to search for each query (the cluster formed from the corresponding candidates).
// - We run IVF flat search with n_probes=1 to select the best k elements of the candidates.
rmm::device_uvector<uint32_t> fake_coarse_idx(n_queries, resource::get_cuda_stream(handle));

thrust::sequence(resource::get_thrust_policy(handle),
fake_coarse_idx.data(),
fake_coarse_idx.data() + n_queries);

raft::neighbors::ivf_flat::index<data_t, idx_t> refinement_index(
handle, metric, n_queries, false, true, dim);

raft::neighbors::ivf_flat::detail::fill_refinement_index(handle,
&refinement_index,
dataset.data_handle(),
neighbor_candidates.data_handle(),
n_queries,
n_candidates);
uint32_t grid_dim_x = 1;
raft::neighbors::ivf_flat::detail::ivfflat_interleaved_scan<
data_t,
typename raft::spatial::knn::detail::utils::config<data_t>::value_t,
idx_t>(refinement_index,
queries.data_handle(),
fake_coarse_idx.data(),
static_cast<uint32_t>(n_queries),
0,
refinement_index.metric(),
1,
k,
raft::distance::is_min_close(metric),
raft::neighbors::filtering::none_ivf_sample_filter(),
indices.data_handle(),
distances.data_handle(),
grid_dim_x,
resource::get_cuda_stream(handle));
}

/** Helper structure for naive CPU implementation of refine. */
typedef struct {
uint64_t id;
float distance;
} struct_for_refinement;

inline int _postprocessing_qsort_compare(const void* v1, const void* v2)
{
// sort in ascending order
if (((struct_for_refinement*)v1)->distance > ((struct_for_refinement*)v2)->distance) {
return 1;
} else if (((struct_for_refinement*)v1)->distance < ((struct_for_refinement*)v2)->distance) {
return -1;
} else {
return 0;
}
}

/**
* Naive CPU implementation of refine operation
*
* All pointers are expected to be accessible on the host.
*/
template <typename idx_t, typename data_t, typename distance_t, typename matrix_idx>
void refine_host(raft::host_matrix_view<const data_t, matrix_idx, row_major> dataset,
raft::host_matrix_view<const data_t, matrix_idx, row_major> queries,
raft::host_matrix_view<const idx_t, matrix_idx, row_major> neighbor_candidates,
raft::host_matrix_view<idx_t, matrix_idx, row_major> indices,
raft::host_matrix_view<distance_t, matrix_idx, row_major> distances,
distance::DistanceType metric = distance::DistanceType::L2Unexpanded)
{
check_input(dataset.extents(),
queries.extents(),
neighbor_candidates.extents(),
indices.extents(),
distances.extents(),
metric);

switch (metric) {
case raft::distance::DistanceType::L2Expanded: break;
case raft::distance::DistanceType::InnerProduct: break;
default: throw raft::logic_error("Unsopported metric");
}

size_t numDataset = dataset.extent(0);
size_t numQueries = queries.extent(0);
size_t dimDataset = dataset.extent(1);
const data_t* dataset_ptr = dataset.data_handle();
const data_t* queries_ptr = queries.data_handle();
const idx_t* neighbors = neighbor_candidates.data_handle();
idx_t topK = neighbor_candidates.extent(1);
idx_t refinedTopK = indices.extent(1);
idx_t* refinedNeighbors = indices.data_handle();
distance_t* refinedDistances = distances.data_handle();

common::nvtx::range<common::nvtx::domain::raft> fun_scope(
"neighbors::refine_host(%zu, %u)", size_t(numQueries), uint32_t(topK));

#pragma omp parallel
{
struct_for_refinement* sfr =
(struct_for_refinement*)malloc(sizeof(struct_for_refinement) * topK);
for (size_t i = omp_get_thread_num(); i < numQueries; i += omp_get_num_threads()) {
// compute distance with original dataset vectors
const data_t* cur_query = queries_ptr + ((uint64_t)dimDataset * i);
for (size_t j = 0; j < (size_t)topK; j++) {
idx_t id = neighbors[j + (topK * i)];
const data_t* cur_dataset = dataset_ptr + ((uint64_t)dimDataset * id);
float distance = 0.0;
for (size_t k = 0; k < (size_t)dimDataset; k++) {
float val_q = (float)(cur_query[k]);
float val_d = (float)(cur_dataset[k]);
if (metric == raft::distance::DistanceType::InnerProduct) {
distance += -val_q * val_d; // Negate because we sort in ascending order.
} else {
distance += (val_q - val_d) * (val_q - val_d);
}
}
sfr[j].id = id;
sfr[j].distance = distance;
}

qsort(sfr, topK, sizeof(struct_for_refinement), _postprocessing_qsort_compare);

for (size_t j = 0; j < (size_t)refinedTopK; j++) {
refinedNeighbors[j + (refinedTopK * i)] = sfr[j].id;
if (refinedDistances == NULL) continue;
if (metric == raft::distance::DistanceType::InnerProduct) {
refinedDistances[j + (refinedTopK * i)] = -sfr[j].distance;
} else {
refinedDistances[j + (refinedTopK * i)] = sfr[j].distance;
}
}
}
free(sfr);
}
}

} // namespace raft::neighbors::detail
#include "refine_device.cuh"
#include "refine_host.hpp"
57 changes: 57 additions & 0 deletions cpp/include/raft/neighbors/detail/refine_common.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

#include <raft/core/mdspan.hpp>
#include <raft/distance/distance_types.hpp>

namespace raft::neighbors::detail {

/** Checks whether the input data extents are compatible. */
template <typename ExtentsT>
void refine_check_input(ExtentsT dataset,
ExtentsT queries,
ExtentsT candidates,
ExtentsT indices,
ExtentsT distances,
distance::DistanceType metric)
{
auto n_queries = queries.extent(0);
auto k = distances.extent(1);

RAFT_EXPECTS(indices.extent(0) == n_queries && distances.extent(0) == n_queries &&
candidates.extent(0) == n_queries,
"Number of rows in output indices, distances and candidates matrices must be equal"
" with the number of rows in search matrix. Expected %d, got %d, %d, and %d",
static_cast<int>(n_queries),
static_cast<int>(indices.extent(0)),
static_cast<int>(distances.extent(0)),
static_cast<int>(candidates.extent(0)));

RAFT_EXPECTS(indices.extent(1) == k,
"Number of columns in output indices and distances matrices must be equal to k");

RAFT_EXPECTS(queries.extent(1) == dataset.extent(1),
"Number of columns must be equal for dataset and queries");

RAFT_EXPECTS(candidates.extent(1) >= k,
"Number of neighbor candidates must not be smaller than k (%d vs %d)",
static_cast<int>(candidates.extent(1)),
static_cast<int>(k));
}

} // namespace raft::neighbors::detail
Loading