Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Small updates to docs #1339

Merged
merged 1 commit into from
Mar 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ RAFT relies heavily on RMM which eases the burden of configuring different alloc

### Multi-dimensional Arrays

The APIs in RAFT currently accept raw pointers to device memory and we are in the process of simplifying the APIs with the [mdspan](https://arxiv.org/abs/2010.06474) multi-dimensional array view for representing data in higher dimensions similar to the `ndarray` in the Numpy Python library. RAFT also contains the corresponding owning `mdarray` structure, which simplifies the allocation and management of multi-dimensional data in both host and device (GPU) memory.
The APIs in RAFT accept the [mdspan](https://arxiv.org/abs/2010.06474) multi-dimensional array view for representing data in higher dimensions similar to the `ndarray` in the Numpy Python library. RAFT also contains the corresponding owning `mdarray` structure, which simplifies the allocation and management of multi-dimensional data in both host and device (GPU) memory.

The `mdarray` forms a convenience layer over RMM and can be constructed in RAFT using a number of different helper functions:

Expand Down
4 changes: 2 additions & 2 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Welcome to RAFT's documentation!
=================================
RAPIDS RAFT: Reusable Accelerated Functions and Tools
=====================================================

RAFT contains fundamental widely-used algorithms and primitives for scientific computing, data science and machine learning. The algorithms are CUDA-accelerated and form building-blocks for rapidly composing analytics.

Expand Down