Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

balanced-k-means: fix a too large initial memory pool size #1148

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 31 additions & 23 deletions cpp/include/raft/spatial/knn/detail/ann_kmeans_balanced.cuh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -18,9 +18,6 @@

#include "ann_utils.cuh"

#include <thrust/gather.h>
#include <thrust/transform.h>

#include <raft/cluster/detail/kmeans_common.cuh>
#include <raft/common/nvtx.hpp>
#include <raft/core/cudart_utils.hpp>
Expand All @@ -45,6 +42,11 @@
#include <rmm/mr/device/managed_memory_resource.hpp>
#include <rmm/mr/device/per_device_resource.hpp>

#include <thrust/gather.h>
#include <thrust/transform.h>

#include <tuple>

namespace raft::spatial::knn::detail::kmeans {

constexpr static inline const float kAdjustCentersWeight = 7.0f;
Expand Down Expand Up @@ -170,35 +172,40 @@ inline void predict_float_core(const handle_t& handle,
*
* @param n_clusters number of clusters in kmeans clustering
* @param n_rows dataset size
* @return a suggested minibatch size
* @param dim
* @param metric
* @param is_float float input requires less temporary buffers
* @return a suggested minibatch size and the expected memory cost per-row (in bytes)
*/
template <typename IdxT>
constexpr inline auto calc_minibatch_size(uint32_t n_clusters,
IdxT n_rows,
uint32_t dim,
raft::distance::DistanceType metric,
bool is_float) -> IdxT
constexpr auto calc_minibatch_size(
uint32_t n_clusters, IdxT n_rows, uint32_t dim, distance::DistanceType metric, bool is_float)
-> std::tuple<IdxT, size_t>
{
n_clusters = std::max<uint32_t>(1, n_clusters);

// Estimate memory needs per row (i.e element of the batch).
IdxT mem_per_row = 0;
/* fusedL2NN only needs one integer per row for a mutex.
* Other metrics require storing a distance matrix. */
if (metric != raft::distance::DistanceType::L2Expanded &&
metric != raft::distance::DistanceType::L2SqrtExpanded) {
mem_per_row += sizeof(float) * n_clusters;
} else {
mem_per_row += sizeof(int);
size_t mem_per_row = 0;
switch (metric) {
// fusedL2NN only needs one integer per row for a mutex.
case distance::DistanceType::L2Expanded:
case distance::DistanceType::L2SqrtExpanded: {
mem_per_row += sizeof(int);
} break;
// Other metrics require storing a distance matrix.
default: {
mem_per_row += sizeof(float) * n_clusters;
}
}

// If we need to convert to float, space required for the converted batch.
if (!is_float) { mem_per_row += sizeof(float) * dim; }

// Heuristic: calculate the minibatch size in order to use at most 1GB of memory.
IdxT minibatch_size = (1 << 30) / mem_per_row;
minibatch_size = 64 * ceildiv(minibatch_size, (IdxT)64);
minibatch_size = 64 * div_rounding_up_safe(minibatch_size, IdxT{64});
minibatch_size = std::min<IdxT>(minibatch_size, n_rows);
return minibatch_size;
return std::make_tuple(minibatch_size, mem_per_row);
}

/**
Expand Down Expand Up @@ -383,7 +390,7 @@ void predict(const handle_t& handle,
common::nvtx::range<common::nvtx::domain::raft> fun_scope(
"kmeans::predict(%zu, %u)", static_cast<size_t>(n_rows), n_clusters);
if (mr == nullptr) { mr = rmm::mr::get_current_device_resource(); }
IdxT max_minibatch_size =
auto [max_minibatch_size, _mem_per_row] =
calc_minibatch_size(n_clusters, n_rows, dim, metric, std::is_same_v<T, float>);
rmm::device_uvector<float> cur_dataset(
std::is_same_v<T, float> ? 0 : max_minibatch_size * dim, stream, mr);
Expand Down Expand Up @@ -972,9 +979,10 @@ void build_hierarchical(const handle_t& handle,

rmm::mr::managed_memory_resource managed_memory;
rmm::mr::device_memory_resource* device_memory = nullptr;
IdxT max_minibatch_size =
auto [max_minibatch_size, mem_per_row] =
calc_minibatch_size(n_clusters, n_rows, dim, metric, std::is_same_v<T, float>);
auto pool_guard = raft::get_pool_memory_resource(device_memory, max_minibatch_size * dim * 4);
auto pool_guard =
raft::get_pool_memory_resource(device_memory, mem_per_row * size_t(max_minibatch_size));
if (pool_guard) {
RAFT_LOG_DEBUG(
"kmeans::build_hierarchical: using pool memory resource with initial size %zu bytes",
Expand Down