-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1ab2e2d
commit efa8056
Showing
2 changed files
with
195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
/* | ||
* Copyright (c) 2022, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cstdint> | ||
#include <fstream> | ||
#include <iostream> | ||
#include <sstream> | ||
#include <string> | ||
|
||
#include <common/benchmark.hpp> | ||
#include <limits> | ||
#include <raft/distance/sparse_l2_nn.cuh> | ||
#include <raft/handle.hpp> | ||
#include <raft/linalg/norm.cuh> | ||
#include <raft/random/rng.cuh> | ||
#include <raft/util/cudart_utils.hpp> | ||
|
||
#if defined RAFT_NN_COMPILED | ||
#include <raft/spatial/knn/specializations.hpp> | ||
#endif | ||
|
||
namespace raft::bench::spatial::sparse { | ||
|
||
// Introduce various sparsity patterns | ||
enum SparsityPattern { | ||
checkerboard = 0, | ||
checkerboard_4 = 1, | ||
checkerboard_64 = 2, | ||
all_true = 3, | ||
all_false = 4 | ||
}; | ||
|
||
struct sparse_l2_nn_inputs { | ||
int m, n, k, num_groups; | ||
SparsityPattern pattern; | ||
}; // struct sparse_l2_nn_inputs | ||
|
||
__global__ void init_adj( | ||
int m, int n, int num_groups, SparsityPattern pattern, bool* adj, int* group_idxs) | ||
{ | ||
for (int i = blockIdx.y * blockDim.y + threadIdx.y; i < num_groups; i += blockDim.y * gridDim.y) { | ||
for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < m; j += blockDim.x * gridDim.x) { | ||
switch (pattern) { | ||
case checkerboard: adj[i * m + j] = (i + j) % 2; break; | ||
case checkerboard_4: adj[i * m + j] = (i + (j / 4)) % 2; break; | ||
case checkerboard_64: adj[i * m + j] = (i + (j / 64)) % 2; break; | ||
case all_true: adj[i * m + j] = true; break; | ||
case all_false: adj[i * m + j] = false; break; | ||
default: assert(false && "unknown pattern"); | ||
} | ||
} | ||
} | ||
// Each group is of size n / num_groups. | ||
// | ||
// - group_idxs[j] indicates the start of group j + 1 (i.e. is the inclusive | ||
// scan of the group lengths) | ||
// | ||
// - The first group always starts at index zero, so we do not store it. | ||
// | ||
// - The group_idxs[num_groups - 1] should always equal n. | ||
|
||
if (blockIdx.y == 0 && threadIdx.y == 0) { | ||
for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < num_groups; | ||
j += blockDim.x * gridDim.x) { | ||
group_idxs[j] = (j + 1) * (n / num_groups); | ||
} | ||
group_idxs[num_groups - 1] = n; | ||
} | ||
} | ||
|
||
template <typename T> | ||
struct sparse_l2_nn : public fixture { | ||
sparse_l2_nn(const sparse_l2_nn_inputs& p) | ||
: params(p), | ||
out(p.m, stream), | ||
x(p.m * p.k, stream), | ||
y(p.n * p.k, stream), | ||
xn(p.m, stream), | ||
yn(p.n, stream), | ||
adj(p.m * p.num_groups, stream), | ||
group_idxs(p.num_groups, stream), | ||
workspace(p.m, stream) | ||
{ | ||
raft::handle_t handle{stream}; | ||
raft::random::RngState r(123456ULL); | ||
|
||
uniform(handle, r, x.data(), p.m * p.k, T(-1.0), T(1.0)); | ||
uniform(handle, r, y.data(), p.n * p.k, T(-1.0), T(1.0)); | ||
raft::linalg::rowNorm(xn.data(), x.data(), p.k, p.m, raft::linalg::L2Norm, true, stream); | ||
raft::linalg::rowNorm(yn.data(), y.data(), p.k, p.n, raft::linalg::L2Norm, true, stream); | ||
raft::distance::initialize<T, cub::KeyValuePair<int, T>, int>( | ||
handle, out.data(), p.m, std::numeric_limits<T>::max(), op); | ||
|
||
dim3 block(32, 32); | ||
dim3 grid(10, 10); | ||
init_adj<<<grid, block, 0, stream>>>( | ||
p.m, p.n, p.num_groups, p.pattern, adj.data(), group_idxs.data()); | ||
RAFT_CUDA_TRY(cudaGetLastError()); | ||
} | ||
|
||
void run_benchmark(::benchmark::State& state) override | ||
{ | ||
loop_on_state(state, [this]() { | ||
// It is sufficient to only benchmark the L2-squared metric | ||
raft::distance::sparseL2NN<T, cub::KeyValuePair<int, T>, int>(out.data(), | ||
x.data(), | ||
y.data(), | ||
xn.data(), | ||
yn.data(), | ||
adj.data(), | ||
group_idxs.data(), | ||
params.num_groups, | ||
params.m, | ||
params.n, | ||
params.k, | ||
(void*)workspace.data(), | ||
op, | ||
pairRedOp, | ||
false, | ||
false, | ||
stream); | ||
}); | ||
} | ||
|
||
private: | ||
sparse_l2_nn_inputs params; | ||
rmm::device_uvector<T> x, y, xn, yn; | ||
rmm::device_uvector<bool> adj; | ||
rmm::device_uvector<int> group_idxs; | ||
rmm::device_uvector<cub::KeyValuePair<int, T>> out; | ||
rmm::device_uvector<int> workspace; | ||
raft::distance::KVPMinReduce<int, T> pairRedOp; | ||
raft::distance::MinAndDistanceReduceOp<int, T> op; | ||
}; // struct SparseL2NN | ||
|
||
// TODO: Consider thinning the list of benchmark cases.. | ||
const std::vector<sparse_l2_nn_inputs> sparse_l2_nn_input_vecs = { | ||
// Very fat matrices... | ||
{32, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
{64, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
{128, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
{256, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
{512, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
{1024, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
{16384, 32, 16384, 32, SparsityPattern::checkerboard}, | ||
{16384, 64, 16384, 32, SparsityPattern::checkerboard}, | ||
{16384, 128, 16384, 32, SparsityPattern::checkerboard}, | ||
{16384, 256, 16384, 32, SparsityPattern::checkerboard}, | ||
{16384, 512, 16384, 32, SparsityPattern::checkerboard}, | ||
{16384, 1024, 16384, 32, SparsityPattern::checkerboard}, | ||
|
||
// Representative matrices... | ||
{16384, 16384, 32, 32, SparsityPattern::checkerboard}, | ||
{16384, 16384, 64, 32, SparsityPattern::checkerboard}, | ||
{16384, 16384, 128, 32, SparsityPattern::checkerboard}, | ||
{16384, 16384, 256, 32, SparsityPattern::checkerboard}, | ||
{16384, 16384, 512, 32, SparsityPattern::checkerboard}, | ||
{16384, 16384, 1024, 32, SparsityPattern::checkerboard}, | ||
{16384, 16384, 16384, 32, SparsityPattern::checkerboard}, | ||
|
||
{16384, 16384, 32, 32, SparsityPattern::checkerboard_4}, | ||
{16384, 16384, 64, 32, SparsityPattern::checkerboard_4}, | ||
{16384, 16384, 128, 32, SparsityPattern::checkerboard_4}, | ||
{16384, 16384, 256, 32, SparsityPattern::checkerboard_4}, | ||
{16384, 16384, 512, 32, SparsityPattern::checkerboard_4}, | ||
{16384, 16384, 1024, 32, SparsityPattern::checkerboard_4}, | ||
{16384, 16384, 16384, 32, SparsityPattern::checkerboard_4}, | ||
|
||
{16384, 16384, 32, 32, SparsityPattern::checkerboard_64}, | ||
{16384, 16384, 64, 32, SparsityPattern::checkerboard_64}, | ||
{16384, 16384, 128, 32, SparsityPattern::checkerboard_64}, | ||
{16384, 16384, 256, 32, SparsityPattern::checkerboard_64}, | ||
{16384, 16384, 512, 32, SparsityPattern::checkerboard_64}, | ||
{16384, 16384, 1024, 32, SparsityPattern::checkerboard_64}, | ||
{16384, 16384, 16384, 32, SparsityPattern::checkerboard_64}, | ||
}; | ||
|
||
RAFT_BENCH_REGISTER(sparse_l2_nn<float>, "", sparse_l2_nn_input_vecs); | ||
// Do not benchmark double. | ||
|
||
} // namespace raft::bench::spatial::sparse |