Skip to content

Commit

Permalink
Add script to analyze nvcc compile time log
Browse files Browse the repository at this point in the history
  • Loading branch information
ahendriksen committed Mar 21, 2023
1 parent d175ed6 commit 9acd1d0
Show file tree
Hide file tree
Showing 2 changed files with 144 additions and 1 deletion.
2 changes: 1 addition & 1 deletion cpp/cmake/modules/ConfigureCUDA.cmake
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# =============================================================================
# Copyright (c) 2018-2022, NVIDIA CORPORATION.
# Copyright (c) 2018-2023, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
Expand Down
143 changes: 143 additions & 0 deletions cpp/scripts/analyze_nvcc_log.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
#!/usr/bin/env python3
# Copyright (c) 2023, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
from matplotlib import colors

def main(input_path):
input_path = Path(input_path)
print("-- loading data")
df = pd.read_csv(input_path)

print("-- analyzing data")
# Strip spaces from column names
df = df.rename(columns=str.strip)
df["seconds"] = df["metric"] / 1000
df["file"] = df["source file name"]
df["phase"] = df["phase name"].str.strip()

def categorize_time(s):
if s < 60:
return "less than a minute"
else:
return "more than a minute"

dfp = (df
# Remove nvcc driver entries. They don't contain a source file name
.query("phase!='nvcc (driver)'")
# Make a pivot table containing files as row, phase (preprocessing,
# cicc, etc.) as column and the total times as table entries. NOTE:
# if compiled for multiple archs, the archs will be summed.
.pivot_table(index="file", values="seconds", columns="phase", aggfunc='sum'))

dfp_sum = dfp.sum(axis="columns")

df_fraction = dfp.divide(dfp_sum, axis="index")
df_fraction["total time"] = dfp_sum
df_fraction = df_fraction.melt(ignore_index=False, id_vars="total time", var_name="phase", value_name="fraction")

dfp["total time"] = dfp_sum
df_absolute = dfp.melt(ignore_index=False, id_vars="total time", var_name="phase", value_name="seconds")

df_fraction["time category"] = dfp["total time"].apply(categorize_time)
df_absolute["time category"] = dfp["total time"].apply(categorize_time)

# host: light red to dark red (preprocessing, cudafe, gcc (compiling))
# device: ligt green to dark green (preprocessing, cicc, ptxas)
palette = {
"gcc (preprocessing 4)": colors.hsv_to_rgb((0, 1, 1)),
'cudafe++': colors.hsv_to_rgb((0, 1, .75)),
'gcc (compiling)': colors.hsv_to_rgb((0, 1, .4)),
"gcc (preprocessing 1)": colors.hsv_to_rgb((.33, 1, 1)),
'cicc': colors.hsv_to_rgb((.33, 1, 0.75)),
'ptxas': colors.hsv_to_rgb((.33, 1, 0.4)),
'fatbinary': "grey",
}

print("-- Ten longest translation units:")
colwidth = pd.get_option('display.max_colwidth') - 1
dfp = dfp.reset_index()
dfp["file"] = dfp["file"].apply(lambda s: s[-colwidth:])
print(dfp.sort_values("total time", ascending=False).reset_index().loc[:10])

print("-- Plotting absolute compile times")
abs_out_path = f"{input_path}.absolute.compile_times.png"
sns.displot(
df_absolute.sort_values("total time").reset_index(),
y="file",
hue="phase",
hue_order=reversed(
["gcc (preprocessing 4)", 'cudafe++', 'gcc (compiling)',
"gcc (preprocessing 1)", 'cicc', 'ptxas',
'fatbinary',
]),
palette=palette,
weights="seconds",
multiple="stack",
kind="hist",
height=20,
)
plt.xlabel("seconds");
plt.savefig(abs_out_path)
print(f"-- Wrote absolute compile time plot to {abs_out_path}")

print("-- Plotting relative compile times")
rel_out_path = f"{input_path}.relative.compile_times.png"
sns.displot(
df_fraction.sort_values('total time').reset_index(),
y="file",
hue="phase",
hue_order=reversed(["gcc (preprocessing 4)", 'cudafe++', 'gcc (compiling)',
"gcc (preprocessing 1)", 'cicc', 'ptxas',
'fatbinary',
]),
palette=palette,
weights="fraction",
multiple="stack",
kind="hist",
height=15,
)
plt.xlabel("fraction");
plt.savefig(rel_out_path)
print(f"-- Wrote relative compile time plot to {rel_out_path}")

if __name__ == "__main__":
if len(sys.argv) != 2:
printf("""NVCC log analyzer
Analyzes nvcc logs and outputs a figure with highest ranking translation
units.
Usage:
python analyze_nvcc_log.py <nvcc_log_file.csv>
cpp/scripts/analyze_nvcc_log.py <nvcc_log_file.csv>
Generate the nvcc log file by adding:
list(APPEND RAFT_CUDA_FLAGS "--time=CMakeFiles/nvcc_compile_log.csv")
to cpp/cmake/modules/ConfigureCUDA.cmake.
""")

input_path = Path(sys.argv[1])
if not input_path.exists():
print(f"Path {input_path} does not exist.")
else:
main(input_path)

0 comments on commit 9acd1d0

Please sign in to comment.