-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add script to analyze nvcc compile time log
- Loading branch information
1 parent
d175ed6
commit 9acd1d0
Showing
2 changed files
with
144 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) 2023, NVIDIA CORPORATION. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import sys | ||
import pandas as pd | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
from pathlib import Path | ||
from matplotlib import colors | ||
|
||
def main(input_path): | ||
input_path = Path(input_path) | ||
print("-- loading data") | ||
df = pd.read_csv(input_path) | ||
|
||
print("-- analyzing data") | ||
# Strip spaces from column names | ||
df = df.rename(columns=str.strip) | ||
df["seconds"] = df["metric"] / 1000 | ||
df["file"] = df["source file name"] | ||
df["phase"] = df["phase name"].str.strip() | ||
|
||
def categorize_time(s): | ||
if s < 60: | ||
return "less than a minute" | ||
else: | ||
return "more than a minute" | ||
|
||
dfp = (df | ||
# Remove nvcc driver entries. They don't contain a source file name | ||
.query("phase!='nvcc (driver)'") | ||
# Make a pivot table containing files as row, phase (preprocessing, | ||
# cicc, etc.) as column and the total times as table entries. NOTE: | ||
# if compiled for multiple archs, the archs will be summed. | ||
.pivot_table(index="file", values="seconds", columns="phase", aggfunc='sum')) | ||
|
||
dfp_sum = dfp.sum(axis="columns") | ||
|
||
df_fraction = dfp.divide(dfp_sum, axis="index") | ||
df_fraction["total time"] = dfp_sum | ||
df_fraction = df_fraction.melt(ignore_index=False, id_vars="total time", var_name="phase", value_name="fraction") | ||
|
||
dfp["total time"] = dfp_sum | ||
df_absolute = dfp.melt(ignore_index=False, id_vars="total time", var_name="phase", value_name="seconds") | ||
|
||
df_fraction["time category"] = dfp["total time"].apply(categorize_time) | ||
df_absolute["time category"] = dfp["total time"].apply(categorize_time) | ||
|
||
# host: light red to dark red (preprocessing, cudafe, gcc (compiling)) | ||
# device: ligt green to dark green (preprocessing, cicc, ptxas) | ||
palette = { | ||
"gcc (preprocessing 4)": colors.hsv_to_rgb((0, 1, 1)), | ||
'cudafe++': colors.hsv_to_rgb((0, 1, .75)), | ||
'gcc (compiling)': colors.hsv_to_rgb((0, 1, .4)), | ||
"gcc (preprocessing 1)": colors.hsv_to_rgb((.33, 1, 1)), | ||
'cicc': colors.hsv_to_rgb((.33, 1, 0.75)), | ||
'ptxas': colors.hsv_to_rgb((.33, 1, 0.4)), | ||
'fatbinary': "grey", | ||
} | ||
|
||
print("-- Ten longest translation units:") | ||
colwidth = pd.get_option('display.max_colwidth') - 1 | ||
dfp = dfp.reset_index() | ||
dfp["file"] = dfp["file"].apply(lambda s: s[-colwidth:]) | ||
print(dfp.sort_values("total time", ascending=False).reset_index().loc[:10]) | ||
|
||
print("-- Plotting absolute compile times") | ||
abs_out_path = f"{input_path}.absolute.compile_times.png" | ||
sns.displot( | ||
df_absolute.sort_values("total time").reset_index(), | ||
y="file", | ||
hue="phase", | ||
hue_order=reversed( | ||
["gcc (preprocessing 4)", 'cudafe++', 'gcc (compiling)', | ||
"gcc (preprocessing 1)", 'cicc', 'ptxas', | ||
'fatbinary', | ||
]), | ||
palette=palette, | ||
weights="seconds", | ||
multiple="stack", | ||
kind="hist", | ||
height=20, | ||
) | ||
plt.xlabel("seconds"); | ||
plt.savefig(abs_out_path) | ||
print(f"-- Wrote absolute compile time plot to {abs_out_path}") | ||
|
||
print("-- Plotting relative compile times") | ||
rel_out_path = f"{input_path}.relative.compile_times.png" | ||
sns.displot( | ||
df_fraction.sort_values('total time').reset_index(), | ||
y="file", | ||
hue="phase", | ||
hue_order=reversed(["gcc (preprocessing 4)", 'cudafe++', 'gcc (compiling)', | ||
"gcc (preprocessing 1)", 'cicc', 'ptxas', | ||
'fatbinary', | ||
]), | ||
palette=palette, | ||
weights="fraction", | ||
multiple="stack", | ||
kind="hist", | ||
height=15, | ||
) | ||
plt.xlabel("fraction"); | ||
plt.savefig(rel_out_path) | ||
print(f"-- Wrote relative compile time plot to {rel_out_path}") | ||
|
||
if __name__ == "__main__": | ||
if len(sys.argv) != 2: | ||
printf("""NVCC log analyzer | ||
Analyzes nvcc logs and outputs a figure with highest ranking translation | ||
units. | ||
Usage: | ||
python analyze_nvcc_log.py <nvcc_log_file.csv> | ||
cpp/scripts/analyze_nvcc_log.py <nvcc_log_file.csv> | ||
Generate the nvcc log file by adding: | ||
list(APPEND RAFT_CUDA_FLAGS "--time=CMakeFiles/nvcc_compile_log.csv") | ||
to cpp/cmake/modules/ConfigureCUDA.cmake. | ||
""") | ||
|
||
input_path = Path(sys.argv[1]) | ||
if not input_path.exists(): | ||
print(f"Path {input_path} does not exist.") | ||
else: | ||
main(input_path) |