-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding lap.hpp back (with deprecation) (#529)
Authors: - Corey J. Nolet (https://github.com/cjnolet) Approvers: - Chuck Hastings (https://github.com/ChuckHastings) URL: #529
- Loading branch information
Showing
2 changed files
with
303 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
/* | ||
* Copyright (c) 2020-2022, NVIDIA CORPORATION. | ||
* Copyright 2020 KETAN DATE & RAKESH NAGI | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* | ||
* CUDA Implementation of O(n^3) alternating tree Hungarian Algorithm | ||
* Authors: Ketan Date and Rakesh Nagi | ||
* | ||
* Article reference: | ||
* Date, Ketan, and Rakesh Nagi. "GPU-accelerated Hungarian algorithms | ||
* for the Linear Assignment Problem." Parallel Computing 57 (2016): 52-72. | ||
* | ||
*/ | ||
|
||
/** | ||
* @warning This file is deprecated and will be removed in release 22.06. | ||
* Please use the cuh version instead. | ||
*/ | ||
|
||
#ifndef __LAP_H | ||
#define __LAP_H | ||
|
||
#pragma once | ||
|
||
#include <raft/handle.hpp> | ||
#include <rmm/device_uvector.hpp> | ||
|
||
#include "detail/d_structs.h" | ||
#include "detail/lap_functions.cuh" | ||
|
||
namespace raft { | ||
namespace lap { | ||
|
||
template <typename vertex_t, typename weight_t> | ||
class LinearAssignmentProblem { | ||
vertex_t size_; | ||
vertex_t batchsize_; | ||
weight_t epsilon_; | ||
|
||
weight_t const* d_costs_; | ||
|
||
Vertices<vertex_t, weight_t> d_vertices_dev; | ||
VertexData<vertex_t> d_row_data_dev, d_col_data_dev; | ||
|
||
raft::handle_t const& handle_; | ||
rmm::device_uvector<int> row_covers_v; | ||
rmm::device_uvector<int> col_covers_v; | ||
rmm::device_uvector<weight_t> row_duals_v; | ||
rmm::device_uvector<weight_t> col_duals_v; | ||
rmm::device_uvector<weight_t> col_slacks_v; | ||
rmm::device_uvector<int> row_is_visited_v; | ||
rmm::device_uvector<int> col_is_visited_v; | ||
rmm::device_uvector<vertex_t> row_parents_v; | ||
rmm::device_uvector<vertex_t> col_parents_v; | ||
rmm::device_uvector<vertex_t> row_children_v; | ||
rmm::device_uvector<vertex_t> col_children_v; | ||
rmm::device_uvector<weight_t> obj_val_primal_v; | ||
rmm::device_uvector<weight_t> obj_val_dual_v; | ||
|
||
public: | ||
LinearAssignmentProblem(raft::handle_t const& handle, | ||
vertex_t size, | ||
vertex_t batchsize, | ||
weight_t epsilon) | ||
: handle_(handle), | ||
size_(size), | ||
batchsize_(batchsize), | ||
epsilon_(epsilon), | ||
d_costs_(nullptr), | ||
row_covers_v(0, handle_.get_stream()), | ||
col_covers_v(0, handle_.get_stream()), | ||
row_duals_v(0, handle_.get_stream()), | ||
col_duals_v(0, handle_.get_stream()), | ||
col_slacks_v(0, handle_.get_stream()), | ||
row_is_visited_v(0, handle_.get_stream()), | ||
col_is_visited_v(0, handle_.get_stream()), | ||
row_parents_v(0, handle_.get_stream()), | ||
col_parents_v(0, handle_.get_stream()), | ||
row_children_v(0, handle_.get_stream()), | ||
col_children_v(0, handle_.get_stream()), | ||
obj_val_primal_v(0, handle_.get_stream()), | ||
obj_val_dual_v(0, handle_.get_stream()) | ||
{ | ||
} | ||
|
||
// Executes Hungarian algorithm on the input cost matrix. | ||
void solve(weight_t const* d_cost_matrix, vertex_t* d_row_assignment, vertex_t* d_col_assignment) | ||
{ | ||
initializeDevice(); | ||
|
||
d_vertices_dev.row_assignments = d_row_assignment; | ||
d_vertices_dev.col_assignments = d_col_assignment; | ||
|
||
d_costs_ = d_cost_matrix; | ||
|
||
int step = 0; | ||
|
||
while (step != 100) { | ||
switch (step) { | ||
case 0: step = hungarianStep0(); break; | ||
case 1: step = hungarianStep1(); break; | ||
case 2: step = hungarianStep2(); break; | ||
case 3: step = hungarianStep3(); break; | ||
case 4: step = hungarianStep4(); break; | ||
case 5: step = hungarianStep5(); break; | ||
case 6: step = hungarianStep6(); break; | ||
} | ||
} | ||
|
||
d_costs_ = nullptr; | ||
} | ||
|
||
// Function for getting optimal row dual vector for subproblem spId. | ||
std::pair<const weight_t*, vertex_t> getRowDualVector(int spId) const | ||
{ | ||
return std::make_pair(row_duals_v.data() + spId * size_, size_); | ||
} | ||
|
||
// Function for getting optimal col dual vector for subproblem spId. | ||
std::pair<const weight_t*, vertex_t> getColDualVector(int spId) | ||
{ | ||
return std::make_pair(col_duals_v.data() + spId * size_, size_); | ||
} | ||
|
||
// Function for getting optimal primal objective value for subproblem spId. | ||
weight_t getPrimalObjectiveValue(int spId) | ||
{ | ||
weight_t result; | ||
raft::update_host(&result, obj_val_primal_v.data() + spId, 1, handle_.get_stream()); | ||
CHECK_CUDA(handle_.get_stream()); | ||
return result; | ||
} | ||
|
||
// Function for getting optimal dual objective value for subproblem spId. | ||
weight_t getDualObjectiveValue(int spId) | ||
{ | ||
weight_t result; | ||
raft::update_host(&result, obj_val_dual_v.data() + spId, 1, handle_.get_stream()); | ||
CHECK_CUDA(handle_.get_stream()); | ||
return result; | ||
} | ||
|
||
private: | ||
// Helper function for initializing global variables and arrays on a single host. | ||
void initializeDevice() | ||
{ | ||
cudaStream_t stream = handle_.get_stream(); | ||
row_covers_v.resize(batchsize_ * size_, stream); | ||
col_covers_v.resize(batchsize_ * size_, stream); | ||
row_duals_v.resize(batchsize_ * size_, stream); | ||
col_duals_v.resize(batchsize_ * size_, stream); | ||
col_slacks_v.resize(batchsize_ * size_, stream); | ||
row_is_visited_v.resize(batchsize_ * size_, stream); | ||
col_is_visited_v.resize(batchsize_ * size_, stream); | ||
row_parents_v.resize(batchsize_ * size_, stream); | ||
col_parents_v.resize(batchsize_ * size_, stream); | ||
row_children_v.resize(batchsize_ * size_, stream); | ||
col_children_v.resize(batchsize_ * size_, stream); | ||
obj_val_primal_v.resize(batchsize_, stream); | ||
obj_val_dual_v.resize(batchsize_, stream); | ||
|
||
d_vertices_dev.row_covers = row_covers_v.data(); | ||
d_vertices_dev.col_covers = col_covers_v.data(); | ||
|
||
d_vertices_dev.row_duals = row_duals_v.data(); | ||
d_vertices_dev.col_duals = col_duals_v.data(); | ||
d_vertices_dev.col_slacks = col_slacks_v.data(); | ||
|
||
d_row_data_dev.is_visited = row_is_visited_v.data(); | ||
d_col_data_dev.is_visited = col_is_visited_v.data(); | ||
d_row_data_dev.parents = row_parents_v.data(); | ||
d_row_data_dev.children = row_children_v.data(); | ||
d_col_data_dev.parents = col_parents_v.data(); | ||
d_col_data_dev.children = col_children_v.data(); | ||
|
||
thrust::fill(thrust::device, row_covers_v.begin(), row_covers_v.end(), int{0}); | ||
thrust::fill(thrust::device, col_covers_v.begin(), col_covers_v.end(), int{0}); | ||
thrust::fill(thrust::device, row_duals_v.begin(), row_duals_v.end(), weight_t{0}); | ||
thrust::fill(thrust::device, col_duals_v.begin(), col_duals_v.end(), weight_t{0}); | ||
} | ||
|
||
// Function for calculating initial zeros by subtracting row and column minima from each element. | ||
int hungarianStep0() | ||
{ | ||
detail::initialReduction(handle_, d_costs_, d_vertices_dev, batchsize_, size_); | ||
|
||
return 1; | ||
} | ||
|
||
// Function for calculating initial zeros by subtracting row and column minima from each element. | ||
int hungarianStep1() | ||
{ | ||
detail::computeInitialAssignments( | ||
handle_, d_costs_, d_vertices_dev, batchsize_, size_, epsilon_); | ||
|
||
int next = 2; | ||
|
||
while (true) { | ||
if ((next = hungarianStep2()) == 6) break; | ||
|
||
if ((next = hungarianStep3()) == 5) break; | ||
|
||
hungarianStep4(); | ||
} | ||
|
||
return next; | ||
} | ||
|
||
// Function for checking optimality and constructing predicates and covers. | ||
int hungarianStep2() | ||
{ | ||
int cover_count = detail::computeRowCovers( | ||
handle_, d_vertices_dev, d_row_data_dev, d_col_data_dev, batchsize_, size_); | ||
|
||
int next = (cover_count == batchsize_ * size_) ? 6 : 3; | ||
|
||
return next; | ||
} | ||
|
||
// Function for building alternating tree rooted at unassigned rows. | ||
int hungarianStep3() | ||
{ | ||
int next; | ||
|
||
rmm::device_scalar<bool> flag_v(handle_.get_stream()); | ||
|
||
bool h_flag = false; | ||
flag_v.set_value_async(h_flag, handle_.get_stream()); | ||
|
||
detail::executeZeroCover(handle_, | ||
d_costs_, | ||
d_vertices_dev, | ||
d_row_data_dev, | ||
d_col_data_dev, | ||
flag_v.data(), | ||
batchsize_, | ||
size_, | ||
epsilon_); | ||
|
||
h_flag = flag_v.value(handle_.get_stream()); | ||
|
||
next = h_flag ? 4 : 5; | ||
|
||
return next; | ||
} | ||
|
||
// Function for augmenting the solution along multiple node-disjoint alternating trees. | ||
int hungarianStep4() | ||
{ | ||
detail::reversePass(handle_, d_row_data_dev, d_col_data_dev, batchsize_, size_); | ||
|
||
detail::augmentationPass( | ||
handle_, d_vertices_dev, d_row_data_dev, d_col_data_dev, batchsize_, size_); | ||
|
||
return 2; | ||
} | ||
|
||
// Function for updating dual solution to introduce new zero-cost arcs. | ||
int hungarianStep5() | ||
{ | ||
detail::dualUpdate( | ||
handle_, d_vertices_dev, d_row_data_dev, d_col_data_dev, batchsize_, size_, epsilon_); | ||
|
||
return 3; | ||
} | ||
|
||
// Function for calculating primal and dual objective values at optimality. | ||
int hungarianStep6() | ||
{ | ||
detail::calcObjValPrimal(handle_, | ||
obj_val_primal_v.data(), | ||
d_costs_, | ||
d_vertices_dev.row_assignments, | ||
batchsize_, | ||
size_); | ||
|
||
detail::calcObjValDual(handle_, obj_val_dual_v.data(), d_vertices_dev, batchsize_, size_); | ||
|
||
return 100; | ||
} | ||
}; | ||
|
||
} // namespace lap | ||
} // namespace raft | ||
|
||
#endif |