-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
) - Add support for SDDMM by wrapping the `cusparseSDDMM` - This PR also moved some APIs shared with `SpMM` to the `utils.cuh` file. Authors: - rhdong (https://github.com/rhdong) Approvers: - Ben Frederickson (https://github.com/benfred) - Corey J. Nolet (https://github.com/cjnolet) URL: #2067
- Loading branch information
Showing
13 changed files
with
1,136 additions
and
119 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
#include <common/benchmark.hpp> | ||
#include <cusparse_v2.h> | ||
#include <raft/core/device_resources.hpp> | ||
#include <raft/core/resource/cublas_handle.hpp> | ||
#include <raft/distance/distance.cuh> | ||
#include <raft/distance/distance_types.hpp> | ||
#include <raft/random/rng.cuh> | ||
#include <raft/sparse/linalg/sddmm.hpp> | ||
#include <raft/util/itertools.hpp> | ||
|
||
#include <raft/core/resource/cuda_stream.hpp> | ||
#include <raft/core/resources.hpp> | ||
|
||
#include <random> | ||
#include <sstream> | ||
#include <vector> | ||
|
||
namespace raft::bench::linalg { | ||
|
||
template <typename ValueType> | ||
struct SDDMMBenchParams { | ||
size_t m; | ||
size_t k; | ||
size_t n; | ||
float sparsity; | ||
bool transpose_a; | ||
bool transpose_b; | ||
ValueType alpha = 1.0; | ||
ValueType beta = 0.0; | ||
}; | ||
|
||
enum Alg { SDDMM, Inner }; | ||
|
||
template <typename ValueType> | ||
inline auto operator<<(std::ostream& os, const SDDMMBenchParams<ValueType>& params) -> std::ostream& | ||
{ | ||
os << " m*k*n=" << params.m << "*" << params.k << "*" << params.n | ||
<< "\tsparsity=" << params.sparsity << "\ttrans_a=" << (params.transpose_a ? "T" : "F") | ||
<< " trans_b=" << (params.transpose_b ? "T" : "F"); | ||
return os; | ||
} | ||
|
||
template <typename ValueType, | ||
typename LayoutPolicyA = row_major, | ||
typename LayoutPolicyB = col_major, | ||
const int SDDMMorInner = Alg::SDDMM, | ||
typename IndexType = int64_t> | ||
struct SDDMMBench : public fixture { | ||
SDDMMBench(const SDDMMBenchParams<ValueType>& p) | ||
: fixture(true), | ||
params(p), | ||
handle(stream), | ||
a_data_d(0, stream), | ||
b_data_d(0, stream), | ||
c_indptr_d(0, stream), | ||
c_indices_d(0, stream), | ||
c_data_d(0, stream), | ||
c_dense_data_d(0, stream) | ||
{ | ||
a_data_d.resize(params.m * params.k, stream); | ||
b_data_d.resize(params.k * params.n, stream); | ||
|
||
raft::random::RngState rng(2024ULL); | ||
raft::random::uniform( | ||
handle, rng, a_data_d.data(), params.m * params.k, ValueType(-1.0), ValueType(1.0)); | ||
raft::random::uniform( | ||
handle, rng, b_data_d.data(), params.k * params.n, ValueType(-1.0), ValueType(1.0)); | ||
|
||
std::vector<bool> c_dense_data_h(params.m * params.n); | ||
|
||
c_true_nnz = create_sparse_matrix(c_dense_data_h); | ||
std::vector<ValueType> values(c_true_nnz); | ||
std::vector<IndexType> indices(c_true_nnz); | ||
std::vector<IndexType> indptr(params.m + 1); | ||
|
||
c_data_d.resize(c_true_nnz, stream); | ||
c_indptr_d.resize(params.m + 1, stream); | ||
c_indices_d.resize(c_true_nnz, stream); | ||
|
||
if (SDDMMorInner == Alg::Inner) { c_dense_data_d.resize(params.m * params.n, stream); } | ||
|
||
convert_to_csr(c_dense_data_h, params.m, params.n, values, indices, indptr); | ||
RAFT_EXPECTS(c_true_nnz == c_indices_d.size(), | ||
"Something wrong. The c_true_nnz != c_indices_d.size()!"); | ||
|
||
update_device(c_data_d.data(), values.data(), c_true_nnz, stream); | ||
update_device(c_indices_d.data(), indices.data(), c_true_nnz, stream); | ||
update_device(c_indptr_d.data(), indptr.data(), params.m + 1, stream); | ||
} | ||
|
||
void convert_to_csr(std::vector<bool>& matrix, | ||
IndexType rows, | ||
IndexType cols, | ||
std::vector<ValueType>& values, | ||
std::vector<IndexType>& indices, | ||
std::vector<IndexType>& indptr) | ||
{ | ||
IndexType offset_indptr = 0; | ||
IndexType offset_values = 0; | ||
indptr[offset_indptr++] = 0; | ||
|
||
for (IndexType i = 0; i < rows; ++i) { | ||
for (IndexType j = 0; j < cols; ++j) { | ||
if (matrix[i * cols + j]) { | ||
values[offset_values] = static_cast<ValueType>(1.0); | ||
indices[offset_values] = static_cast<IndexType>(j); | ||
offset_values++; | ||
} | ||
} | ||
indptr[offset_indptr++] = static_cast<IndexType>(offset_values); | ||
} | ||
} | ||
|
||
size_t create_sparse_matrix(std::vector<bool>& matrix) | ||
{ | ||
size_t total_elements = static_cast<size_t>(params.m * params.n); | ||
size_t num_ones = static_cast<size_t>((total_elements * 1.0f) * params.sparsity); | ||
size_t res = num_ones; | ||
|
||
for (size_t i = 0; i < total_elements; ++i) { | ||
matrix[i] = false; | ||
} | ||
|
||
std::random_device rd; | ||
std::mt19937 gen(rd()); | ||
std::uniform_int_distribution<> dis(0, total_elements - 1); | ||
|
||
while (num_ones > 0) { | ||
size_t index = dis(gen); | ||
|
||
if (matrix[index] == false) { | ||
matrix[index] = true; | ||
num_ones--; | ||
} | ||
} | ||
return res; | ||
} | ||
|
||
~SDDMMBench() {} | ||
|
||
void run_benchmark(::benchmark::State& state) override | ||
{ | ||
std::ostringstream label_stream; | ||
label_stream << params; | ||
state.SetLabel(label_stream.str()); | ||
|
||
auto a = raft::make_device_matrix_view<const ValueType, IndexType, LayoutPolicyA>( | ||
a_data_d.data(), | ||
(!params.transpose_a ? params.m : params.k), | ||
(!params.transpose_a ? params.k : params.m)); | ||
|
||
auto b = raft::make_device_matrix_view<const ValueType, IndexType, LayoutPolicyB>( | ||
b_data_d.data(), | ||
(!params.transpose_b ? params.k : params.n), | ||
(!params.transpose_b ? params.n : params.k)); | ||
|
||
auto c_structure = raft::make_device_compressed_structure_view<int64_t, int64_t, int64_t>( | ||
c_indptr_d.data(), | ||
c_indices_d.data(), | ||
params.m, | ||
params.n, | ||
static_cast<IndexType>(c_indices_d.size())); | ||
|
||
auto c = raft::make_device_csr_matrix_view<ValueType>(c_data_d.data(), c_structure); | ||
raft::resource::get_cusparse_handle(handle); | ||
|
||
resource::sync_stream(handle); | ||
|
||
auto op_a = params.transpose_a ? raft::linalg::Operation::TRANSPOSE | ||
: raft::linalg::Operation::NON_TRANSPOSE; | ||
auto op_b = params.transpose_b ? raft::linalg::Operation::TRANSPOSE | ||
: raft::linalg::Operation::NON_TRANSPOSE; | ||
|
||
raft::sparse::linalg::sddmm(handle, | ||
a, | ||
b, | ||
c, | ||
op_a, | ||
op_b, | ||
raft::make_host_scalar_view<ValueType>(¶ms.alpha), | ||
raft::make_host_scalar_view<ValueType>(¶ms.beta)); | ||
resource::sync_stream(handle); | ||
|
||
loop_on_state(state, [this, &a, &b, &c, &op_a, &op_b]() { | ||
if (SDDMMorInner == Alg::SDDMM) { | ||
raft::sparse::linalg::sddmm(handle, | ||
a, | ||
b, | ||
c, | ||
op_a, | ||
op_b, | ||
raft::make_host_scalar_view<ValueType>(¶ms.alpha), | ||
raft::make_host_scalar_view<ValueType>(¶ms.beta)); | ||
resource::sync_stream(handle); | ||
} else { | ||
raft::distance::pairwise_distance(handle, | ||
a_data_d.data(), | ||
b_data_d.data(), | ||
c_dense_data_d.data(), | ||
static_cast<int>(params.m), | ||
static_cast<int>(params.n), | ||
static_cast<int>(params.k), | ||
raft::distance::DistanceType::InnerProduct, | ||
std::is_same_v<LayoutPolicyA, row_major>); | ||
resource::sync_stream(handle); | ||
} | ||
}); | ||
} | ||
|
||
private: | ||
const raft::device_resources handle; | ||
SDDMMBenchParams<ValueType> params; | ||
|
||
rmm::device_uvector<ValueType> a_data_d; | ||
rmm::device_uvector<ValueType> b_data_d; | ||
rmm::device_uvector<ValueType> c_dense_data_d; | ||
|
||
size_t c_true_nnz = 0; | ||
rmm::device_uvector<IndexType> c_indptr_d; | ||
rmm::device_uvector<IndexType> c_indices_d; | ||
rmm::device_uvector<ValueType> c_data_d; | ||
}; | ||
|
||
template <typename ValueType> | ||
static std::vector<SDDMMBenchParams<ValueType>> getInputs() | ||
{ | ||
std::vector<SDDMMBenchParams<ValueType>> param_vec; | ||
struct TestParams { | ||
bool transpose_a; | ||
bool transpose_b; | ||
size_t m; | ||
size_t k; | ||
size_t n; | ||
float sparsity; | ||
}; | ||
|
||
const std::vector<TestParams> params_group = | ||
raft::util::itertools::product<TestParams>({false, true}, | ||
{false, true}, | ||
{size_t(10), size_t(1024)}, | ||
{size_t(128), size_t(1024)}, | ||
{size_t(1024 * 1024)}, | ||
{0.01f, 0.1f, 0.2f, 0.5f}); | ||
|
||
param_vec.reserve(params_group.size()); | ||
for (TestParams params : params_group) { | ||
param_vec.push_back(SDDMMBenchParams<ValueType>( | ||
{params.m, params.k, params.n, params.sparsity, params.transpose_a, params.transpose_b})); | ||
} | ||
return param_vec; | ||
} | ||
|
||
RAFT_BENCH_REGISTER((SDDMMBench<float, row_major, col_major, Alg::SDDMM>), "", getInputs<float>()); | ||
RAFT_BENCH_REGISTER((SDDMMBench<float, col_major, row_major, Alg::SDDMM>), "", getInputs<float>()); | ||
RAFT_BENCH_REGISTER((SDDMMBench<float, row_major, row_major, Alg::SDDMM>), "", getInputs<float>()); | ||
RAFT_BENCH_REGISTER((SDDMMBench<float, col_major, col_major, Alg::SDDMM>), "", getInputs<float>()); | ||
|
||
RAFT_BENCH_REGISTER((SDDMMBench<float, row_major, col_major, Alg::Inner>), "", getInputs<float>()); | ||
|
||
} // namespace raft::bench::linalg |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.