-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'branch-24.06' into bug/correct_member_init_order
- Loading branch information
Showing
26 changed files
with
1,654 additions
and
244 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,287 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
#include <common/benchmark.hpp> | ||
|
||
#include <raft/core/device_csr_matrix.hpp> | ||
#include <raft/core/device_mdarray.hpp> | ||
#include <raft/core/device_mdspan.hpp> | ||
#include <raft/core/device_resources.hpp> | ||
#include <raft/core/resource/cuda_stream.hpp> | ||
#include <raft/core/resources.hpp> | ||
#include <raft/matrix/copy.cuh> | ||
#include <raft/random/make_blobs.cuh> | ||
#include <raft/random/rng_state.hpp> | ||
#include <raft/sparse/convert/csr.cuh> | ||
#include <raft/sparse/matrix/select_k.cuh> | ||
#include <raft/util/cuda_utils.cuh> | ||
#include <raft/util/itertools.hpp> | ||
|
||
#include <rmm/device_uvector.hpp> | ||
|
||
#include <random> | ||
#include <sstream> | ||
#include <unordered_set> | ||
#include <vector> | ||
|
||
namespace raft::bench::sparse { | ||
|
||
template <typename index_t> | ||
struct bench_param { | ||
index_t n_rows; | ||
index_t n_cols; | ||
index_t top_k; | ||
float sparsity; | ||
bool select_min = true; | ||
bool customized_indices = false; | ||
}; | ||
|
||
template <typename index_t> | ||
inline auto operator<<(std::ostream& os, const bench_param<index_t>& params) -> std::ostream& | ||
{ | ||
os << params.n_rows << "#" << params.n_cols << "#" << params.top_k << "#" << params.sparsity; | ||
return os; | ||
} | ||
|
||
template <typename value_t, typename index_t> | ||
struct SelectKCsrTest : public fixture { | ||
SelectKCsrTest(const bench_param<index_t>& p) | ||
: fixture(true), | ||
params(p), | ||
handle(stream), | ||
values_d(0, stream), | ||
indptr_d(0, stream), | ||
indices_d(0, stream), | ||
customized_indices_d(0, stream), | ||
dst_values_d(0, stream), | ||
dst_indices_d(0, stream) | ||
{ | ||
std::vector<bool> dense_values_h(params.n_rows * params.n_cols); | ||
nnz = create_sparse_matrix(params.n_rows, params.n_cols, params.sparsity, dense_values_h); | ||
|
||
std::vector<index_t> indices_h(nnz); | ||
std::vector<index_t> customized_indices_h(nnz); | ||
std::vector<index_t> indptr_h(params.n_rows + 1); | ||
|
||
convert_to_csr(dense_values_h, params.n_rows, params.n_cols, indices_h, indptr_h); | ||
|
||
std::vector<value_t> dst_values_h(params.n_rows * params.top_k, static_cast<value_t>(2.0f)); | ||
std::vector<index_t> dst_indices_h(params.n_rows * params.top_k, | ||
static_cast<index_t>(params.n_rows * params.n_cols * 100)); | ||
|
||
dst_values_d.resize(params.n_rows * params.top_k, stream); | ||
dst_indices_d.resize(params.n_rows * params.top_k, stream); | ||
values_d.resize(nnz, stream); | ||
|
||
if (nnz) { | ||
auto blobs_values = raft::make_device_matrix<value_t, index_t>(handle, 1, nnz); | ||
auto labels = raft::make_device_vector<index_t, index_t>(handle, 1); | ||
|
||
raft::random::make_blobs<value_t, index_t>(blobs_values.data_handle(), | ||
labels.data_handle(), | ||
1, | ||
nnz, | ||
1, | ||
stream, | ||
false, | ||
nullptr, | ||
nullptr, | ||
value_t(1.0), | ||
false, | ||
value_t(-10.0f), | ||
value_t(10.0f), | ||
uint64_t(2024)); | ||
raft::copy(values_d.data(), blobs_values.data_handle(), nnz, stream); | ||
resource::sync_stream(handle); | ||
} | ||
|
||
indices_d.resize(nnz, stream); | ||
indptr_d.resize(params.n_rows + 1, stream); | ||
|
||
update_device(indices_d.data(), indices_h.data(), indices_h.size(), stream); | ||
update_device(indptr_d.data(), indptr_h.data(), indptr_h.size(), stream); | ||
|
||
if (params.customized_indices) { | ||
customized_indices_d.resize(nnz, stream); | ||
update_device(customized_indices_d.data(), | ||
customized_indices_h.data(), | ||
customized_indices_h.size(), | ||
stream); | ||
} | ||
} | ||
|
||
index_t create_sparse_matrix(index_t m, index_t n, value_t sparsity, std::vector<bool>& matrix) | ||
{ | ||
index_t total_elements = static_cast<index_t>(m * n); | ||
index_t num_ones = static_cast<index_t>((total_elements * 1.0f) * sparsity); | ||
index_t res = num_ones; | ||
|
||
for (index_t i = 0; i < total_elements; ++i) { | ||
matrix[i] = false; | ||
} | ||
|
||
std::random_device rd; | ||
std::mt19937 gen(rd()); | ||
std::uniform_int_distribution<> dis_idx(0, total_elements - 1); | ||
|
||
while (num_ones > 0) { | ||
size_t index = dis_idx(gen); | ||
if (matrix[index] == false) { | ||
matrix[index] = true; | ||
num_ones--; | ||
} | ||
} | ||
return res; | ||
} | ||
|
||
void convert_to_csr(std::vector<bool>& matrix, | ||
index_t rows, | ||
index_t cols, | ||
std::vector<index_t>& indices, | ||
std::vector<index_t>& indptr) | ||
{ | ||
index_t offset_indptr = 0; | ||
index_t offset_values = 0; | ||
indptr[offset_indptr++] = 0; | ||
|
||
for (index_t i = 0; i < rows; ++i) { | ||
for (index_t j = 0; j < cols; ++j) { | ||
if (matrix[i * cols + j]) { | ||
indices[offset_values] = static_cast<index_t>(j); | ||
offset_values++; | ||
} | ||
} | ||
indptr[offset_indptr++] = static_cast<index_t>(offset_values); | ||
} | ||
} | ||
|
||
template <typename data_t> | ||
std::optional<data_t> get_opt_var(data_t x) | ||
{ | ||
if (params.customized_indices) { | ||
return x; | ||
} else { | ||
return std::nullopt; | ||
} | ||
} | ||
|
||
void run_benchmark(::benchmark::State& state) override | ||
{ | ||
std::ostringstream label_stream; | ||
label_stream << params; | ||
state.SetLabel(label_stream.str()); | ||
|
||
auto in_val_structure = raft::make_device_compressed_structure_view<index_t, index_t, index_t>( | ||
indptr_d.data(), | ||
indices_d.data(), | ||
params.n_rows, | ||
params.n_cols, | ||
static_cast<index_t>(indices_d.size())); | ||
|
||
auto in_val = | ||
raft::make_device_csr_matrix_view<const value_t>(values_d.data(), in_val_structure); | ||
|
||
std::optional<raft::device_vector_view<const index_t, index_t>> in_idx; | ||
|
||
in_idx = get_opt_var( | ||
raft::make_device_vector_view<const index_t, index_t>(customized_indices_d.data(), nnz)); | ||
|
||
auto out_val = raft::make_device_matrix_view<value_t, index_t, raft::row_major>( | ||
dst_values_d.data(), params.n_rows, params.top_k); | ||
auto out_idx = raft::make_device_matrix_view<index_t, index_t, raft::row_major>( | ||
dst_indices_d.data(), params.n_rows, params.top_k); | ||
|
||
raft::sparse::matrix::select_k(handle, in_val, in_idx, out_val, out_idx, params.select_min); | ||
resource::sync_stream(handle); | ||
loop_on_state(state, [this, &in_val, &in_idx, &out_val, &out_idx]() { | ||
raft::sparse::matrix::select_k( | ||
handle, in_val, in_idx, out_val, out_idx, params.select_min, false); | ||
resource::sync_stream(handle); | ||
}); | ||
} | ||
|
||
protected: | ||
const raft::device_resources handle; | ||
|
||
bench_param<index_t> params; | ||
index_t nnz; | ||
|
||
rmm::device_uvector<value_t> values_d; | ||
rmm::device_uvector<index_t> indptr_d; | ||
rmm::device_uvector<index_t> indices_d; | ||
rmm::device_uvector<index_t> customized_indices_d; | ||
|
||
rmm::device_uvector<value_t> dst_values_d; | ||
rmm::device_uvector<index_t> dst_indices_d; | ||
}; // struct SelectKCsrTest | ||
|
||
template <typename index_t> | ||
const std::vector<bench_param<index_t>> getInputs() | ||
{ | ||
std::vector<bench_param<index_t>> param_vec; | ||
struct TestParams { | ||
index_t m; | ||
index_t n; | ||
index_t k; | ||
}; | ||
|
||
const std::vector<TestParams> params_group{ | ||
{20000, 500, 1}, {20000, 500, 2}, {20000, 500, 4}, {20000, 500, 8}, | ||
{20000, 500, 16}, {20000, 500, 32}, {20000, 500, 64}, {20000, 500, 128}, | ||
{20000, 500, 256}, | ||
|
||
{1000, 10000, 1}, {1000, 10000, 2}, {1000, 10000, 4}, {1000, 10000, 8}, | ||
{1000, 10000, 16}, {1000, 10000, 32}, {1000, 10000, 64}, {1000, 10000, 128}, | ||
{1000, 10000, 256}, | ||
|
||
{100, 100000, 1}, {100, 100000, 2}, {100, 100000, 4}, {100, 100000, 8}, | ||
{100, 100000, 16}, {100, 100000, 32}, {100, 100000, 64}, {100, 100000, 128}, | ||
{100, 100000, 256}, | ||
|
||
{10, 1000000, 1}, {10, 1000000, 2}, {10, 1000000, 4}, {10, 1000000, 8}, | ||
{10, 1000000, 16}, {10, 1000000, 32}, {10, 1000000, 64}, {10, 1000000, 128}, | ||
{10, 1000000, 256}, | ||
|
||
{10, 1000000, 1}, {10, 1000000, 2}, {10, 1000000, 4}, {10, 1000000, 8}, | ||
{10, 1000000, 16}, {10, 1000000, 32}, {10, 1000000, 64}, {10, 1000000, 128}, | ||
{10, 1000000, 256}, | ||
|
||
{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128}, | ||
{10, 1000000, 256}, | ||
|
||
{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128}, | ||
{10, 1000000, 256}, {1000, 10000, 1}, {1000, 10000, 16}, {1000, 10000, 64}, | ||
{1000, 10000, 128}, {1000, 10000, 256}, | ||
|
||
{10, 1000000, 1}, {10, 1000000, 16}, {10, 1000000, 64}, {10, 1000000, 128}, | ||
{10, 1000000, 256}, {1000, 10000, 1}, {1000, 10000, 16}, {1000, 10000, 64}, | ||
{1000, 10000, 128}, {1000, 10000, 256}}; | ||
|
||
param_vec.reserve(params_group.size()); | ||
for (TestParams params : params_group) { | ||
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.1})); | ||
} | ||
for (TestParams params : params_group) { | ||
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.2})); | ||
} | ||
for (TestParams params : params_group) { | ||
param_vec.push_back(bench_param<index_t>({params.m, params.n, params.k, 0.5})); | ||
} | ||
return param_vec; | ||
} | ||
|
||
RAFT_BENCH_REGISTER((SelectKCsrTest<float, uint32_t>), "", getInputs<uint32_t>()); | ||
|
||
} // namespace raft::bench::sparse |
Oops, something went wrong.