-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This PR adds synthetic benchmarks for CAGRA. The kNN graph is generated randomly, otherwise most of the time would be spent in building the index. Authors: - Tamas Bela Feher (https://github.com/tfeher) Approvers: - Corey J. Nolet (https://github.com/cjnolet) URL: #1496
- Loading branch information
Showing
3 changed files
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
/* | ||
* Copyright (c) 2023, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#pragma once | ||
|
||
#include <common/benchmark.hpp> | ||
#include <raft/neighbors/cagra.cuh> | ||
#include <raft/random/rng.cuh> | ||
#include <raft/util/itertools.hpp> | ||
|
||
#include <optional> | ||
|
||
namespace raft::bench::neighbors { | ||
|
||
struct params { | ||
/** Size of the dataset. */ | ||
size_t n_samples; | ||
/** Number of dimensions in the dataset. */ | ||
int n_dims; | ||
/** The batch size -- number of KNN searches. */ | ||
int n_queries; | ||
/** Number of nearest neighbours to find for every probe. */ | ||
int k; | ||
/** kNN graph degree*/ | ||
int degree; | ||
int itopk_size; | ||
int block_size; | ||
int num_parents; | ||
int max_iterations; | ||
}; | ||
|
||
template <typename T, typename IdxT> | ||
struct CagraBench : public fixture { | ||
explicit CagraBench(const params& ps) | ||
: fixture(true), | ||
params_(ps), | ||
queries_(make_device_matrix<T, IdxT>(handle, ps.n_queries, ps.n_dims)) | ||
{ | ||
// Generate random dataset and queriees | ||
auto dataset = make_device_matrix<T, IdxT>(handle, ps.n_samples, ps.n_dims); | ||
raft::random::RngState state{42}; | ||
constexpr T kRangeMax = std::is_integral_v<T> ? std::numeric_limits<T>::max() : T(1); | ||
constexpr T kRangeMin = std::is_integral_v<T> ? std::numeric_limits<T>::min() : T(-1); | ||
if constexpr (std::is_integral_v<T>) { | ||
raft::random::uniformInt( | ||
state, dataset.data_handle(), dataset.size(), kRangeMin, kRangeMax, stream); | ||
raft::random::uniformInt( | ||
state, queries_.data_handle(), queries_.size(), kRangeMin, kRangeMax, stream); | ||
} else { | ||
raft::random::uniform( | ||
state, dataset.data_handle(), dataset.size(), kRangeMin, kRangeMax, stream); | ||
raft::random::uniform( | ||
state, queries_.data_handle(), queries_.size(), kRangeMin, kRangeMax, stream); | ||
} | ||
|
||
// Generate random knn graph | ||
auto knn_graph = make_device_matrix<IdxT, IdxT>(handle, ps.n_samples, ps.degree); | ||
raft::random::uniformInt<IdxT>( | ||
state, knn_graph.data_handle(), knn_graph.size(), 0, ps.n_samples - 1, stream); | ||
|
||
auto metric = raft::distance::DistanceType::L2Expanded; | ||
|
||
index_.emplace(raft::neighbors::experimental::cagra::index<T, IdxT>( | ||
handle, metric, make_const_mdspan(dataset.view()), knn_graph.view())); | ||
} | ||
|
||
void run_benchmark(::benchmark::State& state) override | ||
{ | ||
raft::neighbors::experimental::cagra::search_params search_params; | ||
search_params.max_queries = 1024; | ||
search_params.itopk_size = params_.itopk_size; | ||
search_params.team_size = 0; | ||
search_params.thread_block_size = params_.block_size; | ||
search_params.num_parents = params_.num_parents; | ||
|
||
auto indices = make_device_matrix<IdxT, IdxT>(handle, params_.n_queries, params_.k); | ||
auto distances = make_device_matrix<float, IdxT>(handle, params_.n_queries, params_.k); | ||
auto ind_v = make_device_matrix_view<IdxT, IdxT, row_major>( | ||
indices.data_handle(), params_.n_queries, params_.k); | ||
auto dist_v = make_device_matrix_view<float, IdxT, row_major>( | ||
distances.data_handle(), params_.n_queries, params_.k); | ||
|
||
auto queries_v = make_const_mdspan(queries_.view()); | ||
loop_on_state(state, [&]() { | ||
raft::neighbors::experimental::cagra::search( | ||
this->handle, search_params, *this->index_, queries_v, ind_v, dist_v); | ||
}); | ||
|
||
double data_size = params_.n_samples * params_.n_dims * sizeof(T); | ||
double graph_size = params_.n_samples * params_.degree * sizeof(IdxT); | ||
|
||
int iterations = params_.max_iterations; | ||
if (iterations == 0) { | ||
// see search_plan_impl::adjust_search_params() | ||
double r = params_.itopk_size / static_cast<float>(params_.num_parents); | ||
iterations = 1 + std::min(r * 1.1, r + 10); | ||
} | ||
state.counters["dataset (GiB)"] = data_size / (1 << 30); | ||
state.counters["graph (GiB)"] = graph_size / (1 << 30); | ||
state.counters["n_rows"] = params_.n_samples; | ||
state.counters["n_cols"] = params_.n_dims; | ||
state.counters["degree"] = params_.degree; | ||
state.counters["n_queries"] = params_.n_queries; | ||
state.counters["k"] = params_.k; | ||
state.counters["itopk_size"] = params_.itopk_size; | ||
state.counters["block_size"] = params_.block_size; | ||
state.counters["num_parents"] = params_.num_parents; | ||
state.counters["iterations"] = iterations; | ||
} | ||
|
||
private: | ||
const params params_; | ||
std::optional<const raft::neighbors::experimental::cagra::index<T, IdxT>> index_; | ||
raft::device_matrix<T, IdxT, row_major> queries_; | ||
}; | ||
|
||
inline const std::vector<params> generate_inputs() | ||
{ | ||
std::vector<params> inputs = | ||
raft::util::itertools::product<params>({2000000ull}, // n_samples | ||
{128, 256, 512, 1024}, // dataset dim | ||
{1000}, // n_queries | ||
{32}, // k | ||
{64}, // knn graph degree | ||
{64}, // itopk_size | ||
{0}, // block_size | ||
{1}, // num_parents | ||
{0} // max_iterations | ||
); | ||
auto inputs2 = raft::util::itertools::product<params>({2000000ull, 10000000ull}, // n_samples | ||
{128}, // dataset dim | ||
{1000}, // n_queries | ||
{32}, // k | ||
{64}, // knn graph degree | ||
{64}, // itopk_size | ||
{64, 128, 256, 512, 1024}, // block_size | ||
{1}, // num_parents | ||
{0} // max_iterations | ||
); | ||
inputs.insert(inputs.end(), inputs2.begin(), inputs2.end()); | ||
return inputs; | ||
} | ||
|
||
const std::vector<params> kCagraInputs = generate_inputs(); | ||
|
||
#define CAGRA_REGISTER(ValT, IdxT, inputs) \ | ||
namespace BENCHMARK_PRIVATE_NAME(knn) { \ | ||
using AnnCagra = CagraBench<ValT, IdxT>; \ | ||
RAFT_BENCH_REGISTER(AnnCagra, #ValT "/" #IdxT, inputs); \ | ||
} | ||
|
||
} // namespace raft::bench::neighbors |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
/* | ||
* Copyright (c) 2023, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "../cagra_bench.cuh" | ||
|
||
namespace raft::bench::neighbors { | ||
|
||
CAGRA_REGISTER(float, uint32_t, kCagraInputs); | ||
|
||
} // namespace raft::bench::neighbors |