Skip to content

Commit

Permalink
Add CAGRA gbench (#1496)
Browse files Browse the repository at this point in the history
This PR adds synthetic benchmarks for CAGRA.

The kNN graph is generated randomly, otherwise most of the time would be spent in building the index.

Authors:
  - Tamas Bela Feher (https://github.com/tfeher)

Approvers:
  - Corey J. Nolet (https://github.com/cjnolet)

URL: #1496
  • Loading branch information
tfeher authored Jul 18, 2023
1 parent 8173112 commit 1824e42
Show file tree
Hide file tree
Showing 3 changed files with 189 additions and 0 deletions.
1 change: 1 addition & 0 deletions cpp/bench/prims/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@ if(BUILD_PRIMS_BENCH)
PATH
bench/prims/neighbors/knn/brute_force_float_int64_t.cu
bench/prims/neighbors/knn/brute_force_float_uint32_t.cu
bench/prims/neighbors/knn/cagra_float_uint32_t.cu
bench/prims/neighbors/knn/ivf_flat_float_int64_t.cu
bench/prims/neighbors/knn/ivf_flat_int8_t_int64_t.cu
bench/prims/neighbors/knn/ivf_flat_uint8_t_int64_t.cu
Expand Down
165 changes: 165 additions & 0 deletions cpp/bench/prims/neighbors/cagra_bench.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

#include <common/benchmark.hpp>
#include <raft/neighbors/cagra.cuh>
#include <raft/random/rng.cuh>
#include <raft/util/itertools.hpp>

#include <optional>

namespace raft::bench::neighbors {

struct params {
/** Size of the dataset. */
size_t n_samples;
/** Number of dimensions in the dataset. */
int n_dims;
/** The batch size -- number of KNN searches. */
int n_queries;
/** Number of nearest neighbours to find for every probe. */
int k;
/** kNN graph degree*/
int degree;
int itopk_size;
int block_size;
int num_parents;
int max_iterations;
};

template <typename T, typename IdxT>
struct CagraBench : public fixture {
explicit CagraBench(const params& ps)
: fixture(true),
params_(ps),
queries_(make_device_matrix<T, IdxT>(handle, ps.n_queries, ps.n_dims))
{
// Generate random dataset and queriees
auto dataset = make_device_matrix<T, IdxT>(handle, ps.n_samples, ps.n_dims);
raft::random::RngState state{42};
constexpr T kRangeMax = std::is_integral_v<T> ? std::numeric_limits<T>::max() : T(1);
constexpr T kRangeMin = std::is_integral_v<T> ? std::numeric_limits<T>::min() : T(-1);
if constexpr (std::is_integral_v<T>) {
raft::random::uniformInt(
state, dataset.data_handle(), dataset.size(), kRangeMin, kRangeMax, stream);
raft::random::uniformInt(
state, queries_.data_handle(), queries_.size(), kRangeMin, kRangeMax, stream);
} else {
raft::random::uniform(
state, dataset.data_handle(), dataset.size(), kRangeMin, kRangeMax, stream);
raft::random::uniform(
state, queries_.data_handle(), queries_.size(), kRangeMin, kRangeMax, stream);
}

// Generate random knn graph
auto knn_graph = make_device_matrix<IdxT, IdxT>(handle, ps.n_samples, ps.degree);
raft::random::uniformInt<IdxT>(
state, knn_graph.data_handle(), knn_graph.size(), 0, ps.n_samples - 1, stream);

auto metric = raft::distance::DistanceType::L2Expanded;

index_.emplace(raft::neighbors::experimental::cagra::index<T, IdxT>(
handle, metric, make_const_mdspan(dataset.view()), knn_graph.view()));
}

void run_benchmark(::benchmark::State& state) override
{
raft::neighbors::experimental::cagra::search_params search_params;
search_params.max_queries = 1024;
search_params.itopk_size = params_.itopk_size;
search_params.team_size = 0;
search_params.thread_block_size = params_.block_size;
search_params.num_parents = params_.num_parents;

auto indices = make_device_matrix<IdxT, IdxT>(handle, params_.n_queries, params_.k);
auto distances = make_device_matrix<float, IdxT>(handle, params_.n_queries, params_.k);
auto ind_v = make_device_matrix_view<IdxT, IdxT, row_major>(
indices.data_handle(), params_.n_queries, params_.k);
auto dist_v = make_device_matrix_view<float, IdxT, row_major>(
distances.data_handle(), params_.n_queries, params_.k);

auto queries_v = make_const_mdspan(queries_.view());
loop_on_state(state, [&]() {
raft::neighbors::experimental::cagra::search(
this->handle, search_params, *this->index_, queries_v, ind_v, dist_v);
});

double data_size = params_.n_samples * params_.n_dims * sizeof(T);
double graph_size = params_.n_samples * params_.degree * sizeof(IdxT);

int iterations = params_.max_iterations;
if (iterations == 0) {
// see search_plan_impl::adjust_search_params()
double r = params_.itopk_size / static_cast<float>(params_.num_parents);
iterations = 1 + std::min(r * 1.1, r + 10);
}
state.counters["dataset (GiB)"] = data_size / (1 << 30);
state.counters["graph (GiB)"] = graph_size / (1 << 30);
state.counters["n_rows"] = params_.n_samples;
state.counters["n_cols"] = params_.n_dims;
state.counters["degree"] = params_.degree;
state.counters["n_queries"] = params_.n_queries;
state.counters["k"] = params_.k;
state.counters["itopk_size"] = params_.itopk_size;
state.counters["block_size"] = params_.block_size;
state.counters["num_parents"] = params_.num_parents;
state.counters["iterations"] = iterations;
}

private:
const params params_;
std::optional<const raft::neighbors::experimental::cagra::index<T, IdxT>> index_;
raft::device_matrix<T, IdxT, row_major> queries_;
};

inline const std::vector<params> generate_inputs()
{
std::vector<params> inputs =
raft::util::itertools::product<params>({2000000ull}, // n_samples
{128, 256, 512, 1024}, // dataset dim
{1000}, // n_queries
{32}, // k
{64}, // knn graph degree
{64}, // itopk_size
{0}, // block_size
{1}, // num_parents
{0} // max_iterations
);
auto inputs2 = raft::util::itertools::product<params>({2000000ull, 10000000ull}, // n_samples
{128}, // dataset dim
{1000}, // n_queries
{32}, // k
{64}, // knn graph degree
{64}, // itopk_size
{64, 128, 256, 512, 1024}, // block_size
{1}, // num_parents
{0} // max_iterations
);
inputs.insert(inputs.end(), inputs2.begin(), inputs2.end());
return inputs;
}

const std::vector<params> kCagraInputs = generate_inputs();

#define CAGRA_REGISTER(ValT, IdxT, inputs) \
namespace BENCHMARK_PRIVATE_NAME(knn) { \
using AnnCagra = CagraBench<ValT, IdxT>; \
RAFT_BENCH_REGISTER(AnnCagra, #ValT "/" #IdxT, inputs); \
}

} // namespace raft::bench::neighbors
23 changes: 23 additions & 0 deletions cpp/bench/prims/neighbors/knn/cagra_float_uint32_t.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "../cagra_bench.cuh"

namespace raft::bench::neighbors {

CAGRA_REGISTER(float, uint32_t, kCagraInputs);

} // namespace raft::bench::neighbors

0 comments on commit 1824e42

Please sign in to comment.