Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CUDA 12.2 in nightlies #483

Merged
merged 5 commits into from
Feb 27, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions _includes/selector.html
Original file line number Diff line number Diff line change
Expand Up @@ -370,8 +370,8 @@

// all possible values
python_vers: ["3.9", "3.10"],
cuda_vers: ["11.2", "11.8", "12.0"],
pip_cuda_vers: ["11.2 - 11.8", "12.0"],
cuda_vers: ["11.2", "11.8", "12.0", "12.2"],
pip_cuda_vers: ["11.2 - 11.8", "12"],
methods: ["Conda", "pip", "Docker"],
releases: ["Stable", "Nightly"],
img_loc: ["NGC", "Dockerhub"],
Expand Down Expand Up @@ -627,9 +627,9 @@
},
getpipNotes() {
var notes = [];
var install_location_notes = "<code>cuDF</code>, <code>dask-cuDF</code>, <code>cuML</code>, <code>cuGraph</code>, <code>cuSpatial</code>, <code>cuProj</code>, <code>cuxfilter</code>, <code>cuCIM</code>, and <code>RAFT</code> pip packages are hosted by NVIDIA<br>"
var install_location_notes = "RAPIDS pip packages are hosted by NVIDIA<br>"
bdice marked this conversation as resolved.
Show resolved Hide resolved
notes = [...notes, install_location_notes,
'pip installation supports Python <code>3.9</code> and <code>3.10</code><br>'];
'pip installation supports only Python <code>3.9</code> and <code>3.10</code><br>'];

return notes.map(note => this.note_prefix + " " + note);
},
Expand Down Expand Up @@ -668,6 +668,7 @@
var isDisabled = false;
if (this.active_additional_packages.includes("TensorFlow") && (cuda_version !== "12.0")) isDisabled = true;
if (this.active_method === "Docker" && cuda_version < "11.8") isDisabled = true;
if (this.active_release != "Nightly" && cuda_version === "12.2") isDisabled = true;
return isDisabled;
},
disableUnsupportedPython(python_version) {
Expand Down Expand Up @@ -696,6 +697,8 @@
},
releaseClickHandler(e, release) {
if (this.isDisabled(e.target)) return;
// Remove below after we support 12.2 in stable
if (this.active_cuda_ver === "12.2" && release === "Stable") this.active_cuda_ver = "12.0";
this.active_release = release;
},
imgTypeClickHandler(e, type) {
Expand Down
6 changes: 4 additions & 2 deletions install/install.md
Original file line number Diff line number Diff line change
Expand Up @@ -137,14 +137,15 @@ All provisioned systems need to be RAPIDS capable. Here's what is required:
- <i class="fas fa-check-circle"></i> [CUDA 11.5](https://developer.nvidia.com/cuda-11-5-0-download-archive){: target="_blank"} with Driver 495.29.05 or newer
- <i class="fas fa-check-circle"></i> [CUDA 11.8](https://developer.nvidia.com/cuda-11-8-0-download-archive){: target="_blank"} with Driver 520.61.05 or newer
- <i class="fas fa-check-circle"></i> [CUDA 12.0](https://developer.nvidia.com/cuda-12-0-1-download-archive){: target="_blank"} with Driver 525.60.13 or newer **see CUDA 12 section below for notes on usage**
- <i class="fas fa-check-circle"></i> [CUDA 12.2](https://developer.nvidia.com/cuda-12-2-2-download-archive){: target="_blank"} with Driver 535.86.10 or newer **see CUDA 12 section below for notes on usage**

**Note**: RAPIDS is tested with and officially supports the versions listed above. Newer CUDA and driver versions may also work with RAPIDS. See [CUDA compatibility](https://docs.nvidia.com/deploy/cuda-compatibility/index.html) for details.

## **CUDA 12 Support**

### **Docker and Conda**

- <i class="fas fa-info-circle"></i> CUDA 12 conda packages and Docker images currently support CUDA 12.0
- <i class="fas fa-info-circle"></i> Stable CUDA 12 conda packages and Docker images currently support CUDA 12.0. Additionally, nightly versions now support CUDA 12.2
- <i class="fas fa-info-circle"></i> CUDA 11 conda packages and Docker images can be used on a system with a CUDA 12 driver because they include their own CUDA toolkit

### **pip**
Expand Down Expand Up @@ -334,8 +335,9 @@ Windows users can now tap into GPU accelerated data science on their local machi
1. Install WSL2 and the Ubuntu 22.04 package [using Microsoft's instructions](https://docs.microsoft.com/en-us/windows/wsl/install){: target="_blank"}.
2. Install the [latest NVIDIA Drivers](https://www.nvidia.com/download/index.aspx){: target="_blank"} on the Windows host.
3. Log in to the WSL2 Linux instance.
4. Follow [this helpful developer guide](https://docs.nvidia.com/cuda/wsl-user-guide/index.html#cuda-support-for-wsl2){: target="_blank"} and then install the WSL-specific [CUDA 11.8](https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local){: target="_blank"} or [CUDA 12.0](https://developer.nvidia.com/cuda-12-0-1-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local){: target="_blank"} Toolkit without drivers into the WSL2 instance.
4. Follow [this helpful developer guide](https://docs.nvidia.com/cuda/wsl-user-guide/index.html#cuda-support-for-wsl2){: target="_blank"} and then install the WSL-specific [CUDA 11](https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local){: target="_blank"} or [CUDA 12](https://developer.nvidia.com/cuda-12-0-1-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local){: target="_blank"} Toolkit without drivers into the WSL2 instance.
bdice marked this conversation as resolved.
Show resolved Hide resolved
- The installed CUDA Toolkit version must match the pip wheel version (`-cu11` or `-cu12`)
- Any CUDA 12 CTK will work with RAPIDS `-cu12` pip packages
5. Install RAPIDS pip packages on the WSL2 Linux Instance using the [release selector](#selector) commands.
6. Run this code to check that the RAPIDS installation is working:
```
Expand Down