Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LinearRegression: add support for multiple targets #4988

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions python/cuml/linear_model/base.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import ctypes
import cuml.internals
import numpy as np
import cupy as cp
import warnings

from numba import cuda
Expand All @@ -35,6 +36,7 @@ from cuml.common.mixins import RegressorMixin
from cuml.common.doc_utils import generate_docstring
from pylibraft.common.handle cimport handle_t
from cuml.common import input_to_cuml_array
from cuml.common.input_utils import input_to_cupy_array

cdef extern from "cuml/linear_model/glm.hpp" namespace "ML::GLM":

Expand Down Expand Up @@ -66,6 +68,21 @@ class LinearPredictMixin:
Predicts `y` values for `X`.

"""
coef_cp, n_feat, n_targets, _ = input_to_cupy_array(self.coef_)
ahendriksen marked this conversation as resolved.
Show resolved Hide resolved
if 1 < n_targets:
# Handle multi-target prediction in Python.
X_cp = input_to_cupy_array(
X,
check_dtype=self.dtype,
convert_to_dtype=(self.dtype if convert_dtype else None),
check_cols=self.n_cols
).array
intercept_cp = input_to_cupy_array(self.intercept_).array
preds_cp = X_cp @ coef_cp + intercept_cp
preds = input_to_cuml_array(preds_cp).array
ahendriksen marked this conversation as resolved.
Show resolved Hide resolved
return preds

# Handle single-target prediction in C++
X_m, n_rows, n_cols, dtype = \
input_to_cuml_array(X, check_dtype=self.dtype,
convert_to_dtype=(self.dtype if convert_dtype
Expand Down
118 changes: 116 additions & 2 deletions python/cuml/linear_model/linear_regression.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import ctypes
import numpy as np
import cupy as cp
import warnings

from numba import cuda
Expand All @@ -37,6 +38,7 @@ from pylibraft.common.handle cimport handle_t
from pylibraft.common.handle import Handle
from cuml.common import input_to_cuml_array
from cuml.common.mixins import FMajorInputTagMixin
from cuml.common.input_utils import input_to_cupy_array

cdef extern from "cuml/linear_model/glm.hpp" namespace "ML::GLM":

Expand Down Expand Up @@ -65,6 +67,55 @@ cdef extern from "cuml/linear_model/glm.hpp" namespace "ML::GLM":
double *sample_weight) except +


def divide_non_zero(x1, x2):
# Value chosen to be consistent with the RAFT implementation in
# linalg/detail/lstsq.cuh
eps = 1e-10

# Do not divide by values of x2 that are smaller than eps
mask = abs(x2) < eps
x2[mask] = 1.

return x1 / x2


def fit_multi_target(X, y, fit_intercept=True, sample_weight=None):
assert X.ndim == 2
assert y.ndim == 2

x_rows, x_cols = X.shape
if x_cols == 0:
raise ValueError(
"Number of columns cannot be less than one"
)
if x_rows < 2:
raise ValueError(
"Number of rows cannot be less than two"
)

if fit_intercept:
# Add column containg ones to fit intercept.
nrow, ncol = X.shape
X_wide = cp.empty_like(X, shape=(nrow, ncol + 1))
X_wide[:, :ncol] = X
X_wide[:, ncol] = 1.
X = X_wide

if sample_weight is not None:
sample_weight = cp.sqrt(sample_weight)
X = sample_weight[:, None] * X
y = sample_weight[:, None] * y

u, s, vh = cp.linalg.svd(X, full_matrices=False)

params = vh.T @ divide_non_zero(u.T @ y, s[:, None])
ahendriksen marked this conversation as resolved.
Show resolved Hide resolved

coef = params[:-1] if fit_intercept else params
intercept = params[-1] if fit_intercept else None

return coef, intercept


class LinearRegression(Base,
RegressorMixin,
LinearPredictMixin,
Expand Down Expand Up @@ -239,11 +290,11 @@ class LinearRegression(Base,
input_to_cuml_array(X, check_dtype=[np.float32, np.float64])
X_ptr = X_m.ptr

y_m, _, _, _ = \
y_m, _, y_cols, _ = \
input_to_cuml_array(y, check_dtype=self.dtype,
convert_to_dtype=(self.dtype if convert_dtype
else None),
check_rows=n_rows, check_cols=1)
check_rows=n_rows)
y_ptr = y_m.ptr

if sample_weight is not None:
Expand All @@ -270,6 +321,14 @@ class LinearRegression(Base,
"column currently.", UserWarning)
self.algo = 0

if 1 < y_cols:
del X_m
del y_m
if sample_weight is not None:
del sample_weight_m
ahendriksen marked this conversation as resolved.
Show resolved Hide resolved

return self._fit_multi_target(X, y, convert_dtype, sample_weight)

self.coef_ = CumlArray.zeros(self.n_cols, dtype=self.dtype)
cdef uintptr_t coef_ptr = self.coef_.ptr

Expand Down Expand Up @@ -316,6 +375,61 @@ class LinearRegression(Base,

return self

def _fit_multi_target(self, X, y, convert_dtype=True, sample_weight=None):
# In the cuml C++ layer, there is no support yet for multi-target
# regression, i.e., a y vector with multiple columns.
# We implement the regression in Python here.
ahendriksen marked this conversation as resolved.
Show resolved Hide resolved

if self.algo != 0:
warnings.warn("Changing solver to 'svd' as this is the " +
"only solver that support multiple targets " +
"currently.", UserWarning)
self.algo = 0
if self.normalize:
raise ValueError(
"The normalize option is not supported when `y` has "
"multiple columns."
)

X_cupy = input_to_cupy_array(
X,
convert_to_dtype=(self.dtype if convert_dtype else None),
).array
y_cupy, _, y_cols, _ = input_to_cupy_array(
y,
convert_to_dtype=(self.dtype if convert_dtype else None),
)
if sample_weight is None:
sample_weight_cupy = None
else:
sample_weight_cupy = input_to_cupy_array(
sample_weight,
convert_to_dtype=(self.dtype if convert_dtype else None),
).array
coef, intercept = fit_multi_target(
X_cupy,
y_cupy,
fit_intercept=self.fit_intercept,
sample_weight=sample_weight_cupy
)
self.coef_, _, _, _ = input_to_cuml_array(
coef,
check_dtype=self.dtype,
check_rows=self.n_cols,
check_cols=y_cols
)
if self.fit_intercept:
self.intercept_, _, _, _ = input_to_cuml_array(
intercept,
check_dtype=self.dtype,
check_rows=y_cols,
check_cols=1
)
else:
self.intercept_ = CumlArray.zeros(y_cols, dtype=self.dtype)

return self

def _predict(self, X, convert_dtype=True) -> CumlArray:
self.dtype = self.coef_.dtype
self.n_cols = self.coef_.shape[0]
Expand Down
24 changes: 18 additions & 6 deletions python/cuml/tests/test_linear_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@ def cuml_compatible_dataset(X_train, X_test, y_train, _=None):
)


@pytest.mark.parametrize("ntargets", [1, 2])
@pytest.mark.parametrize("datatype", [np.float32, np.float64])
@pytest.mark.parametrize("algorithm", ["eig", "svd"])
@pytest.mark.parametrize(
Expand All @@ -137,16 +138,19 @@ def cuml_compatible_dataset(X_train, X_test, y_train, _=None):
stress_param([1000, 500])
],
)
def test_linear_regression_model(datatype, algorithm, nrows, column_info):

def test_linear_regression_model(
datatype, algorithm, nrows, column_info, ntargets
):
if algorithm == "svd" and nrows > 46340:
pytest.skip("svd solver is not supported for the data that has more"
"than 46340 rows or columns if you are using CUDA version"
"10.x")
if 1 < ntargets and algorithm != "svd":
pytest.skip("The multi-target fit only supports using the svd solver.")

ncols, n_info = column_info
X_train, X_test, y_train, y_test = make_regression_dataset(
datatype, nrows, ncols, n_info
datatype, nrows, ncols, n_info, n_targets=ntargets
)

# Initialization of cuML's linear regression model
Expand All @@ -168,6 +172,7 @@ def test_linear_regression_model(datatype, algorithm, nrows, column_info):
assert array_equal(skols_predict, cuols_predict, 1e-1, with_sign=True)


@pytest.mark.parametrize("ntargets", [1, 2])
@pytest.mark.parametrize("datatype", [np.float32, np.float64])
@pytest.mark.parametrize("algorithm", ["eig", "svd", "qr", "svd-qr"])
@pytest.mark.parametrize(
Expand All @@ -180,13 +185,20 @@ def test_linear_regression_model(datatype, algorithm, nrows, column_info):
(False, False, "uniform"),
]
)
def test_weighted_linear_regression(datatype, algorithm, fit_intercept,
normalize, distribution):
def test_weighted_linear_regression(
ntargets, datatype, algorithm, fit_intercept, normalize, distribution
):
nrows, ncols, n_info = 1000, 20, 10
max_weight = 10
noise = 20

if 1 < ntargets and normalize:
pytest.skip("The multi-target fit does not support normalization.")
if 1 < ntargets and algorithm != "svd":
pytest.skip("The multi-target fit only supports using the svd solver.")

X_train, X_test, y_train, y_test = make_regression_dataset(
datatype, nrows, ncols, n_info, noise=noise
datatype, nrows, ncols, n_info, noise=noise, n_targets=ntargets
)

# set weight per sample to be from 1 to max_weight
Expand Down