Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement hypothesis-based tests for linear models #4952

Merged
Show file tree
Hide file tree
Changes from 27 commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
fe6d204
Implement first prototype for hypothesis-based linear model testing.
csadorf Oct 26, 2022
cb98126
Fix copyright years.
csadorf Oct 27, 2022
fed4b6c
Adjust comments spacing to make flake8 happy.
csadorf Oct 27, 2022
ff26882
Fix and clarify assumptions.
csadorf Oct 27, 2022
01ee031
Remove max_examples override.
csadorf Oct 27, 2022
0b1a5d8
Document search strategies.
csadorf Oct 27, 2022
d7af241
Mention hypothesis strategies in developer guide.
csadorf Oct 27, 2022
dedc1ba
Datasets output values shape is either (n_samples,) or (n_samples, n_…
csadorf Oct 27, 2022
80ae1cb
fixup! Datasets output values shape is either (n_samples,) or (n_samp…
csadorf Oct 27, 2022
fab7c72
Load hypothesis profiles based on test configuration.
csadorf Oct 28, 2022
23966fa
Increase min number of samples for split_datasets() default datasets.
csadorf Oct 28, 2022
8f18663
Slightly adjust strategy definition and extend documentation.
csadorf Nov 1, 2022
fa69180
Extend and further clarify needed assumptions.
csadorf Nov 1, 2022
31346db
Declare expected failure for test_linear_regression_model_default test.
csadorf Nov 1, 2022
53dcf8f
Drop assumption for unused variable.
csadorf Nov 1, 2022
f2a0953
Improve customizability of hypothesis regression_datasets() strategy.
csadorf Nov 4, 2022
c8c100b
Adjust hypothesis profiles for more reasonable runtimes.
csadorf Nov 2, 2022
bf71841
Suppress data_too_large hypothesis healthcheck.
csadorf Nov 4, 2022
258b233
Use a more sensible strategy for n_informative.
csadorf Nov 4, 2022
79ad0cd
Improve implementation of the split_datasets() strategy.
csadorf Nov 4, 2022
3dd7036
Adjust default sizes for standard_regression_datasets strategy.
csadorf Nov 4, 2022
e9beee9
fixup! Improve customizability of hypothesis regression_datasets() st…
csadorf Nov 4, 2022
c17c991
Add additional test for standard_dataset strategy.
csadorf Nov 4, 2022
35dfbf1
fixup! Improve implementation of the split_datasets() strategy.
csadorf Nov 7, 2022
af49c89
Find hypothesis strategy to pass test_linear_regression_model_default.
csadorf Nov 7, 2022
779a23f
Refactor required assumptions into dedicated functions.
csadorf Nov 2, 2022
af41aa2
Implement test_linear_regression_model_default_generalized as stop-gap.
csadorf Nov 7, 2022
1f99c1f
Minor fixup of the documentation.
csadorf Nov 8, 2022
22fcb64
Suppress too_slow healtcheck for flaky test.
csadorf Nov 8, 2022
117496a
Merge branch 'branch-22.12' into fea-hypothesis-based-testing-for-cpu…
csadorf Nov 9, 2022
706f1ac
Suppress too_slow healthcheck for test_split_regression_datasets.
csadorf Nov 11, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
250 changes: 250 additions & 0 deletions python/cuml/testing/strategies.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
# Copyright (c) 2022, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from hypothesis import assume
from hypothesis.extra.numpy import arrays, floating_dtypes
from hypothesis.strategies import composite, integers, just, none, one_of
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split


@composite
def standard_datasets(
draw,
dtypes=floating_dtypes(),
n_samples=integers(min_value=0, max_value=200),
n_features=integers(min_value=0, max_value=200),
*,
n_targets=just(1),
):
"""
Returns a strategy to generate standard estimator input datasets.

Parameters
----------
dtypes: SearchStrategy[np.dtype], default=floating_dtypes()
Returned arrays will have a dtype drawn from these types.
n_samples: SearchStrategy[int],\
default=integers(min_value=0, max_value=200)
Returned arrays will have number of rows drawn from these values.
n_features: SearchStrategy[int],\
default=integers(min_value=0, max_values=200)
Returned arrays will have number of columns drawn from these values.
n_targets: SearchStrategy[int], default=just(1)
Determines the number of targets returned datasets may contain.

Returns
-------
X: SearchStrategy[array] (n_samples, n_features)
The search strategy for input samples.
y: SearchStrategy[array] (n_samples,) or (n_samples, n_targets)
The search strategy for output samples.

"""
xs = draw(n_samples)
ys = draw(n_features)
X = arrays(dtype=dtypes, shape=(xs, ys))
y = arrays(dtype=dtypes, shape=(xs, draw(n_targets)))
return draw(X), draw(y)


def combined_datasets_strategy(* datasets, name=None, doc=None):
"""
Combine multiple datasets strategies into a single datasets strategy.

This function will return a new strategy that will build the provided
strategy functions with the common parameters (dtypes, n_samples,
n_features) and then draw from one of them.

Parameters:
-----------
* datasets: list[Callable[[dtypes, n_samples, n_features], SearchStrategy]]
A list of functions that return a dataset search strategy when called
with the shown arguments.
name: The name of the returned search strategy, default="datasets"
Defaults to a combination of names of the provided dataset stratgegy
functions.
doc: The doc-string of the returned search strategy, default=None
Defaults to a generic doc-string.

Returns
-------
Datasets search strategy: SearchStrategy[array, array]
"""

@composite
def strategy(
draw,
dtypes=floating_dtypes(),
n_samples=integers(min_value=0, max_value=200),
n_features=integers(min_value=0, max_value=200)
):
"""Datasets strategy composed of multiple datasets strategies."""
datasets_strategies = (
dataset(dtypes, n_samples, n_features) for dataset in datasets)
return draw(one_of(datasets_strategies))

strategy.__name__ = "datasets" if name is None else name
if doc is not None:
strategy.__doc__ = doc

return strategy


@composite
def split_datasets(
draw,
datasets,
test_sizes=None,
):
"""
Split a generic search strategy for datasets into test and train subsets.

The resulting split is guaranteed to have at least one sample in both the
train and test split respectively.

Note: This function uses the sklearn.model_selection.train_test_split
function.

See also:
standard_datasets(): A search strategy for datasets that can serve as input
to this strategy.

Parameters
----------
datasets: SearchStrategy[dataset]
A search strategy for datasets.
test_sizes: SearchStrategy[float] | SearchStrategy[int], default=None
A search strategy for the test size. Must be provided as a search
strategy for integers or floats. Integers should be bound by one and
the sample size, floats should be between 0 and 1.0. Defaults to
a search strategy that will generate a valid unbiased split.

Returns
-------
(X_train, X_test, y_train, y_test): SearchStrategy[4 * array]
The train-test split of the input and output samples drawn from
the provided datasets search strategy.
"""
X, y = draw(datasets)
assume(len(X) > 1)

# Determine default value for test_sizes
if test_sizes is None:
test_sizes = integers(1, max(1, len(X) - 1))

test_size = draw(test_sizes)

# Check assumptions for test_size
if isinstance(test_size, float):
assume(int(len(X) * test_size) > 0)
assume(int(len(X) * (1.0 - test_size)) > 0)
elif isinstance(test_size, int):
assume(1 < test_size < len(X))

return train_test_split(X, y, test_size=test_size)


@composite
def standard_regression_datasets(
draw,
dtypes=floating_dtypes(),
n_samples=integers(min_value=100, max_value=200),
n_features=integers(min_value=100, max_value=200),
*,
n_informative=None,
n_targets=just(1),
bias=just(0.0),
effective_rank=none(),
tail_strength=just(0.5),
noise=just(0.0),
shuffle=just(True),
random_state=None,
):
"""
Returns a strategy to generate regression problem input datasets.

Note:
This function uses the sklearn.datasets.make_regression function to
generate the regression problem from the provided search strategies.


Parameters
----------
dtypes: SearchStrategy[np.dtype]
Returned arrays will have a dtype drawn from these types.
n_samples: SearchStrategy[int]
Returned arrays will have number of rows drawn from these values.
n_features: SearchStrategy[int]
Returned arrays will have number of columns drawn from these values.
n_informative: SearchStrategy[int], default=none
A search strategy for the number of informative features. If none,
will use 10% of the actual number of features, but not less than 1
unless the number of features is zero.
n_targets: SearchStrategy[int], default=just(1)
A search strategy for the number of targets, that means the number of
columns of the returned y output array.
bias: SearchStrategy[float], default=just(0.0)
A search strategy for the bias term.
effective_rank=none()
If not None, a search strategy for the effective rank of the input data
for the regression problem. See sklearn.dataset.make_regression() for a
detailed explanation of this parameter.
tail_strength: SearchStrategy[float], default=just(0.5)
See sklearn.dataset.make_regression() for a detailed explanation of
this parameter.
noise: SearchStrategy[float], default=just(0.0)
A search strategy for the standard deviation of the gaussian noise.
shuffle: SearchStrategy[bool], default=just(True)
A boolean search strategy to determine whether samples and features
are shuffled.
random_state: int, RandomState instance or None, default=None
Pass a random state or integer to determine the random number
generation for data set generation.

Returns
-------
(X, y): SearchStrategy[array, array]
A search strategy for a tuple of two arrays subject to the
provided parameters.
"""
n_features_ = draw(n_features)
if n_informative is None:
n_informative = just(max(min(n_features_, 1), int(0.1 * n_features_)))
X, y = make_regression(
n_samples=draw(n_samples),
n_features=n_features_,
n_informative=draw(n_informative),
n_targets=draw(n_targets),
bias=draw(bias),
effective_rank=draw(effective_rank),
tail_strength=draw(tail_strength),
noise=draw(noise),
shuffle=draw(shuffle),
random_state=random_state,
)
dtype_ = draw(dtypes)
return X.astype(dtype_), y.astype(dtype_)


regression_datasets = combined_datasets_strategy(
standard_datasets, standard_regression_datasets,
name="regression_datasets",
doc="""
Returns strategy for the generation of regression problem datasets.

Drawn from the standard_datasets and the standard_regression_datasets
strategies.
"""
)
15 changes: 15 additions & 0 deletions python/cuml/testing/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,21 @@
import pytest


def array_difference(a, b, with_sign=True):
"""
Utility function to compute the difference between 2 arrays.
"""
a = to_nparray(a)
b = to_nparray(b)

if len(a) == 0 and len(b) == 0:
return 0

if not with_sign:
a, b = np.abs(a), np.abs(b)
return np.sum(np.abs(a - b))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A common issue we've had is that sometimes it is very hard to diagnose the error or magnitude of errors when tests fail, adding some printing when failing here might be highly benefitial

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This function does not directly fail tests, but only computes the difference between arrays a and b similar to array_equal(). I use it as a target function to steer hypothesis towards larger errors.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Implemented in #4973 .



def array_equal(a, b, unit_tol=1e-4, total_tol=1e-4, with_sign=True):
"""
Utility function to compare 2 numpy arrays. Two individual elements
Expand Down
36 changes: 36 additions & 0 deletions python/cuml/tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

import numpy as np
import cupy as cp
import hypothesis

from math import ceil
from sklearn.datasets import fetch_20newsgroups
Expand All @@ -34,6 +35,30 @@
pytest_plugins = ("cuml.testing.plugins.quick_run_plugin")


# Configure hypothesis profiles

hypothesis.settings.register_profile(
name="unit",
parent=hypothesis.settings.get_profile("default"),
max_examples=20,
suppress_health_check=[
hypothesis.HealthCheck.data_too_large,
],
)

hypothesis.settings.register_profile(
name="quality",
parent=hypothesis.settings.get_profile("unit"),
max_examples=100,
)

hypothesis.settings.register_profile(
name="stress",
parent=hypothesis.settings.get_profile("quality"),
max_examples=200
)


def pytest_addoption(parser):
# Any custom option, that should be available at any time (not just a
# plugin), goes here.
Expand Down Expand Up @@ -101,6 +126,17 @@ def pytest_configure(config):
pytest.max_gpu_memory = get_gpu_memory()
pytest.adapt_stress_test = 'CUML_ADAPT_STRESS_TESTS' in os.environ

# Load special hypothesis profiles for either quality or stress tests.
# Note that the profile can be manually overwritten with the
# --hypothesis-profile command line option in which case the settings
# specified here will be ignored.
if config.getoption("--run_stress"):
hypothesis.settings.load_profile("stress")
elif config.getoption("--run_quality"):
hypothesis.settings.load_profile("quality")
else:
hypothesis.settings.load_profile("unit")


@pytest.fixture(scope="module")
def nlp_20news():
Expand Down
Loading