Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Using pinned host memory for Random Forest and DBSCAN #4215

Merged
merged 3 commits into from
Sep 23, 2021

Conversation

divyegala
Copy link
Member

@divyegala divyegala commented Sep 20, 2021

Benchmarks show that RF performs consistently better with pinned host memory, while DBSCAN sometimes better and sometimes not (within the margin of error), so using pinned host memory by default for both these algorithms.

Ignoring KMeans and LARS for now as both show slightly better perf with pinned host memory but only with increasing number of columns. Since this would need more analysis and deciding if a heuristic is needed for selecting memory, deferring it to 21.12.

Here are the raw numbers:

  1. LARS
    Normal memory:
    {'lars': {(100000, 10): 0.12429666519165039, (100000, 100): 0.015396833419799805, (100000, 250): 0.015408039093017578, (250000, 10): 0.00986933708190918, (250000, 100): 0.023822546005249023, (250000, 250): 0.03715157508850098, (500000, 10): 0.013423442840576172, (500000, 100): 0.044762372970581055, (500000, 250): 0.07782578468322754}
    Pinned memory:
    {'lars': {(100000, 10): 0.12958097457885742, (100000, 100): 0.01501011848449707, (100000, 250): 0.016597509384155273, (250000, 10): 0.01801013946533203, (250000, 100): 0.022644996643066406, (250000, 250): 0.037090301513671875, (500000, 10): 0.020437955856323242, (500000, 100): 0.044635772705078125, (500000, 250): 0.07696056365966797}
  2. RFR
    Normal memory:
    'rfr': {(100000, 10): 1.1951744556427002, (100000, 100): 5.099738359451294, (100000, 250): 11.32804536819458, (250000, 10): 2.0097765922546387, (250000, 100): 9.109776496887207, (250000, 250): 21.058837890625, (500000, 10): 3.3387184143066406, (500000, 100): 15.802990436553955, (500000, 250): 36.80855870246887}
    Pinned memory:
    'rfr': {(100000, 10): 1.1727137565612793, (100000, 100): 4.804195880889893, (100000, 250): 11.621357917785645, (250000, 10): 1.8899295330047607, (250000, 100): 9.16961407661438, (250000, 250): 21.12194561958313, (500000, 10): 3.2937560081481934, (500000, 100): 15.66197681427002, (500000, 250): 36.6080117225647}
  3. KMeans
    Normal memory:
    {(100000, 10): 0.11008882522583008, (100000, 100): 0.15475797653198242, (100000, 250): 0.15683507919311523, (250000, 10): 0.18775177001953125, (250000, 100): 0.25696277618408203, (250000, 250): 0.40389132499694824, (500000, 10): 0.4578282833099365, (500000, 100): 0.3917391300201416, (500000, 250): 0.6426849365234375}
    Pinned memory:
    'kmeans': {(100000, 10): 0.11982870101928711, (100000, 100): 0.16992664337158203, (100000, 250): 0.1021108627319336, (250000, 10): 0.16021251678466797, (250000, 100): 0.31025242805480957, (250000, 250): 0.298201322555542, (500000, 10): 0.21084189414978027, (500000, 100): 0.50473952293396, (500000, 250): 0.6191830635070801}
  4. DBSCAN
    Normal memory:
    'dbscan': {(100000, 10): 0.4957292079925537, (100000, 100): 0.8680248260498047, (100000, 250): 1.585218906402588, (250000, 10): 4.52524995803833, (250000, 100): 7.175846099853516, (250000, 250): 12.135416269302368, (500000, 10): 26.427770853042603, (500000, 100): 37.57275915145874, (500000, 250): 57.98261737823486}}
    Pinned memory:
    'dbscan': {(100000, 10): 0.49578166007995605, (100000, 100): 0.8678708076477051, (100000, 250): 1.5854766368865967, (250000, 10): 4.526952505111694, (250000, 100): 7.172863006591797, (250000, 250): 12.145166397094727, (500000, 10): 26.422622680664062, (500000, 100): 37.56665277481079, (500000, 250): 58.02563738822937}}

@divyegala divyegala requested a review from a team as a code owner September 20, 2021 18:13
@divyegala divyegala added bug Something isn't working CUDA / C++ CUDA issue non-breaking Non-breaking change labels Sep 20, 2021
@dantegd dantegd requested a review from RAMitchell September 20, 2021 19:43
Copy link
Contributor

@RAMitchell RAMitchell left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM!

@codecov-commenter
Copy link

Codecov Report

❗ No coverage uploaded for pull request base (branch-21.10@f415f92). Click here to learn what that means.
The diff coverage is n/a.

Impacted file tree graph

@@               Coverage Diff               @@
##             branch-21.10    #4215   +/-   ##
===============================================
  Coverage                ?   86.08%           
===============================================
  Files                   ?      231           
  Lines                   ?    18637           
  Branches                ?        0           
===============================================
  Hits                    ?    16043           
  Misses                  ?     2594           
  Partials                ?        0           
Flag Coverage Δ
dask 47.05% <0.00%> (?)
non-dask 78.74% <0.00%> (?)

Flags with carried forward coverage won't be shown. Click here to find out more.


Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update f415f92...f8c23b1. Read the comment docs.

@dantegd
Copy link
Member

dantegd commented Sep 23, 2021

@gpucibot merge

@rapids-bot rapids-bot bot merged commit 91d2cb2 into rapidsai:branch-21.10 Sep 23, 2021
vimarsh6739 pushed a commit to vimarsh6739/cuml that referenced this pull request Oct 9, 2023
Benchmarks show that RF performs consistently better with pinned host memory, while DBSCAN sometimes better and sometimes not (within the margin of error), so using pinned host memory by default for both these algorithms.

Ignoring KMeans and LARS for now as both show slightly better perf with pinned host memory but only with increasing number of columns. Since this would need more analysis and deciding if a heuristic is needed for selecting memory, deferring it to 21.12.

Here are the raw numbers:
1. LARS
Normal memory:
```{'lars': {(100000, 10): 0.12429666519165039, (100000, 100): 0.015396833419799805, (100000, 250): 0.015408039093017578, (250000, 10): 0.00986933708190918, (250000, 100): 0.023822546005249023, (250000, 250): 0.03715157508850098, (500000, 10): 0.013423442840576172, (500000, 100): 0.044762372970581055, (500000, 250): 0.07782578468322754}```
Pinned memory:
```{'lars': {(100000, 10): 0.12958097457885742, (100000, 100): 0.01501011848449707, (100000, 250): 0.016597509384155273, (250000, 10): 0.01801013946533203, (250000, 100): 0.022644996643066406, (250000, 250): 0.037090301513671875, (500000, 10): 0.020437955856323242, (500000, 100): 0.044635772705078125, (500000, 250): 0.07696056365966797}```
2. RFR
Normal memory:
```'rfr': {(100000, 10): 1.1951744556427002, (100000, 100): 5.099738359451294, (100000, 250): 11.32804536819458, (250000, 10): 2.0097765922546387, (250000, 100): 9.109776496887207, (250000, 250): 21.058837890625, (500000, 10): 3.3387184143066406, (500000, 100): 15.802990436553955, (500000, 250): 36.80855870246887}```
Pinned memory:
```'rfr': {(100000, 10): 1.1727137565612793, (100000, 100): 4.804195880889893, (100000, 250): 11.621357917785645, (250000, 10): 1.8899295330047607, (250000, 100): 9.16961407661438, (250000, 250): 21.12194561958313, (500000, 10): 3.2937560081481934, (500000, 100): 15.66197681427002, (500000, 250): 36.6080117225647}```
3. KMeans
Normal memory:
```{(100000, 10): 0.11008882522583008, (100000, 100): 0.15475797653198242, (100000, 250): 0.15683507919311523, (250000, 10): 0.18775177001953125, (250000, 100): 0.25696277618408203, (250000, 250): 0.40389132499694824, (500000, 10): 0.4578282833099365, (500000, 100): 0.3917391300201416, (500000, 250): 0.6426849365234375}```
Pinned memory:
```'kmeans': {(100000, 10): 0.11982870101928711, (100000, 100): 0.16992664337158203, (100000, 250): 0.1021108627319336, (250000, 10): 0.16021251678466797, (250000, 100): 0.31025242805480957, (250000, 250): 0.298201322555542, (500000, 10): 0.21084189414978027, (500000, 100): 0.50473952293396, (500000, 250): 0.6191830635070801}```
4. DBSCAN
Normal memory:
```'dbscan': {(100000, 10): 0.4957292079925537, (100000, 100): 0.8680248260498047, (100000, 250): 1.585218906402588, (250000, 10): 4.52524995803833, (250000, 100): 7.175846099853516, (250000, 250): 12.135416269302368, (500000, 10): 26.427770853042603, (500000, 100): 37.57275915145874, (500000, 250): 57.98261737823486}}```
Pinned memory:
```'dbscan': {(100000, 10): 0.49578166007995605, (100000, 100): 0.8678708076477051, (100000, 250): 1.5854766368865967, (250000, 10): 4.526952505111694, (250000, 100): 7.172863006591797, (250000, 250): 12.145166397094727, (500000, 10): 26.422622680664062, (500000, 100): 37.56665277481079, (500000, 250): 58.02563738822937}}```

Authors:
  - Divye Gala (https://github.com/divyegala)

Approvers:
  - Rory Mitchell (https://github.com/RAMitchell)
  - Dante Gama Dessavre (https://github.com/dantegd)

URL: rapidsai#4215
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working CUDA / C++ CUDA issue CUDA/C++ non-breaking Non-breaking change
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants