Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add jni for sequences #9972

Merged
merged 2 commits into from
Jan 5, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 40 additions & 1 deletion java/src/main/java/ai/rapids/cudf/ColumnVector.java
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
/*
*
* Copyright (c) 2019-2021, NVIDIA CORPORATION.
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -498,6 +498,42 @@ public static ColumnVector sequence(Scalar initialValue, int rows) {
}
return new ColumnVector(sequence(initialValue.getScalarHandle(), 0, rows));
}

/**
* Create a list column in which each row is a sequence of values starting from a `start` value,
* incrementing by one, and its cardinality is specified by a `size` value. The `start` and `size`
* values used to generate each list is taken from the corresponding row of the input start and
* size columns.
* @param start first values in the result sequences
* @param size numbers of values in the result sequences
* @return the new ColumnVector.
*/
public static ColumnVector sequence(ColumnView start, ColumnView size) {
assert start.getNullCount() == 0 || size.getNullCount() == 0 : "starts and sizes input " +
"columns must not have nulls.";
return new ColumnVector(sequences(start.getNativeView(), size.getNativeView(), 0));
}

/**
* Create a list column in which each row is a sequence of values starting from a `start` value,
* incrementing by a `step` value, and its cardinality is specified by a `size` value.
* The values `start`, `step`, and `size` used to generate each list is taken from the
* corresponding row of the input starts, steps, and sizes columns.
* @param start first values in the result sequences
* @param size numbers of values in the result sequences
* @param step increment values for the result sequences.
* @return the new ColumnVector.
*/
public static ColumnVector sequence(ColumnView start, ColumnView size, ColumnView step) {
assert start.getNullCount() == 0 || size.getNullCount() == 0 || step.getNullCount() == 0:
"start, size and step must not have nulls.";
assert step.getType() == start.getType() : "start and step input columns must" +
" have the same type.";

return new ColumnVector(sequences(start.getNativeView(), size.getNativeView(),
step.getNativeView()));
}

/**
* Create a new vector by concatenating multiple columns together.
* Note that all columns must have the same type.
Expand Down Expand Up @@ -789,6 +825,9 @@ public ColumnVector castTo(DType type) {

private static native long sequence(long initialValue, long step, int rows);

private static native long sequences(long startHandle, long sizeHandle, long stepHandle)
throws CudfException;

private static native long fromArrow(int type, long col_length,
long null_count, ByteBuffer data, ByteBuffer validity,
ByteBuffer offsets) throws CudfException;
Expand Down
23 changes: 23 additions & 0 deletions java/src/main/native/src/ColumnVectorJni.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
#include <cudf/interop.hpp>
Copy link
Contributor

@firestarman firestarman Jan 5, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks good to me. However forgot to update the copyright year in this file.

- Copyright (c) 2019-2021, NVIDIA CORPORATION.
+ Copyright (c) 2019-2022, NVIDIA CORPORATION.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thx, Done.

#include <cudf/lists/combine.hpp>
#include <cudf/lists/detail/concatenate.hpp>
#include <cudf/lists/filling.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/reshape.hpp>
#include <cudf/scalar/scalar_factories.hpp>
Expand Down Expand Up @@ -54,6 +55,28 @@ JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_sequence(JNIEnv *env, j
CATCH_STD(env, 0);
}

JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_sequences(JNIEnv *env, jclass,
jlong j_start_handle,
jlong j_size_handle,
jlong j_step_handle) {
JNI_NULL_CHECK(env, j_start_handle, "start is null", 0);
JNI_NULL_CHECK(env, j_size_handle, "size is null", 0);
try {
cudf::jni::auto_set_device(env);
auto start = reinterpret_cast<cudf::column_view const *>(j_start_handle);
auto size = reinterpret_cast<cudf::column_view const *>(j_size_handle);
auto step = reinterpret_cast<cudf::column_view const *>(j_step_handle);
std::unique_ptr<cudf::column> col;
if (step) {
col = cudf::lists::sequences(*start, *step, *size);
} else {
col = cudf::lists::sequences(*start, *size);
}
return reinterpret_cast<jlong>(col.release());
}
CATCH_STD(env, 0);
}

JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_fromArrow(
JNIEnv *env, jclass, jint j_type, jlong j_col_length, jlong j_null_count, jobject j_data_obj,
jobject j_validity_obj, jobject j_offsets_obj) {
Expand Down
54 changes: 53 additions & 1 deletion java/src/test/java/ai/rapids/cudf/ColumnVectorTest.java
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
/*
*
* Copyright (c) 2019-2021, NVIDIA CORPORATION.
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -1216,6 +1216,58 @@ void testSequenceOtherTypes() {
});
}

@Test
void testSequencesInt() {
try (ColumnVector start = ColumnVector.fromBoxedInts(1, 2, 3, 4, 5);
ColumnVector size = ColumnVector.fromBoxedInts(2, 3, 2, 0, 1);
ColumnVector step = ColumnVector.fromBoxedInts(2, -1, 1, 1, 0);
ColumnVector cv = ColumnVector.sequence(start, size, step);
ColumnVector cv1 = ColumnVector.sequence(start, size);
ColumnVector expectCv = ColumnVector.fromLists(
new ListType(true, new BasicType(false, DType.INT32)),
Arrays.asList(1, 3),
Arrays.asList(2, 1, 0),
Arrays.asList(3, 4),
Arrays.asList(),
Arrays.asList(5));
ColumnVector expectCv1 = ColumnVector.fromLists(
new ListType(true, new BasicType(false, DType.INT32)),
Arrays.asList(1, 2),
Arrays.asList(2, 3, 4),
Arrays.asList(3, 4),
Arrays.asList(),
Arrays.asList(5))) {
assertColumnsAreEqual(expectCv, cv);
assertColumnsAreEqual(expectCv1, cv1);
}
}

@Test
void testSequencesDouble() {
try (ColumnVector start = ColumnVector.fromBoxedDoubles(1.2, 2.2, 3.2, 4.2, 5.2);
ColumnVector size = ColumnVector.fromBoxedInts(2, 3, 2, 0, 1);
ColumnVector step = ColumnVector.fromBoxedDoubles(2.1, -1.1, 1.1, 1.1, 0.1);
ColumnVector cv = ColumnVector.sequence(start, size, step);
ColumnVector cv1 = ColumnVector.sequence(start, size);
ColumnVector expectCv = ColumnVector.fromLists(
new ListType(true, new BasicType(false, DType.FLOAT64)),
Arrays.asList(1.2, 3.3),
Arrays.asList(2.2, 1.1, 0.0),
Arrays.asList(3.2, 4.3),
Arrays.asList(),
Arrays.asList(5.2));
ColumnVector expectCv1 = ColumnVector.fromLists(
new ListType(true, new BasicType(false, DType.FLOAT64)),
Arrays.asList(1.2, 2.2),
Arrays.asList(2.2, 3.2, 4.2),
Arrays.asList(3.2, 4.2),
Arrays.asList(),
Arrays.asList(5.2))) {
assertColumnsAreEqual(expectCv, cv);
assertColumnsAreEqual(expectCv1, cv1);
}
}

@Test
void testFromScalarZeroRows() {
// magic number to invoke factory method specialized for decimal types
Expand Down