Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Migrate nvtext generate_ngrams APIs to pylibcudf #17006

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
===============
generate_ngrams
===============

.. automodule:: pylibcudf.nvtext.generate_ngrams
:members:
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ nvtext
:maxdepth: 1

edit_distance
generate_ngrams
76 changes: 19 additions & 57 deletions python/cudf/cudf/_lib/nvtext/generate_ngrams.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -2,75 +2,37 @@

from cudf.core.buffer import acquire_spill_lock

from libcpp.memory cimport unique_ptr
from libcpp.utility cimport move

from pylibcudf.libcudf.column.column cimport column
from pylibcudf.libcudf.column.column_view cimport column_view
from pylibcudf.libcudf.nvtext.generate_ngrams cimport (
generate_character_ngrams as cpp_generate_character_ngrams,
generate_ngrams as cpp_generate_ngrams,
hash_character_ngrams as cpp_hash_character_ngrams,
)
from pylibcudf.libcudf.scalar.scalar cimport string_scalar
from pylibcudf.libcudf.types cimport size_type
from pylibcudf.scalar cimport Scalar as plc_Scalar

from cudf._lib.column cimport Column
from cudf._lib.scalar cimport DeviceScalar

from pylibcudf import nvtext


@acquire_spill_lock()
def generate_ngrams(Column strings, int ngrams, object py_separator):

cdef DeviceScalar separator = py_separator.device_value

cdef column_view c_strings = strings.view()
cdef size_type c_ngrams = ngrams
cdef const string_scalar* c_separator = <const string_scalar*>separator\
.get_raw_ptr()
cdef unique_ptr[column] c_result

with nogil:
c_result = move(
cpp_generate_ngrams(
c_strings,
c_ngrams,
c_separator[0]
)
)

return Column.from_unique_ptr(move(c_result))
result = nvtext.generate_ngrams.generate_ngrams(
strings.to_pylibcudf(mode="read"),
<size_type> ngrams,
<plc_Scalar> py_separator.device_value.c_value
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we don't need these explicit casts. I believe Cython will implicitly perform the valid cast if needed

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, I'll try and build without them. I wonder--in general where you can get away with not explicitly casting?

)
return Column.from_pylibcudf(result)


@acquire_spill_lock()
def generate_character_ngrams(Column strings, int ngrams):
cdef column_view c_strings = strings.view()
cdef size_type c_ngrams = ngrams
cdef unique_ptr[column] c_result

with nogil:
c_result = move(
cpp_generate_character_ngrams(
c_strings,
c_ngrams
)
)

return Column.from_unique_ptr(move(c_result))
result = nvtext.generate_ngrams.generate_character_ngrams(
strings.to_pylibcudf(mode="read"),
<size_type> ngrams
)
return Column.from_pylibcudf(result)


@acquire_spill_lock()
def hash_character_ngrams(Column strings, int ngrams):
cdef column_view c_strings = strings.view()
cdef size_type c_ngrams = ngrams
cdef unique_ptr[column] c_result

with nogil:
c_result = move(
cpp_hash_character_ngrams(
c_strings,
c_ngrams
)
)

return Column.from_unique_ptr(move(c_result))
result = nvtext.generate_ngrams.hash_character_ngrams(
strings.to_pylibcudf(mode="read"),
<size_type> ngrams
)
return Column.from_pylibcudf(result)
2 changes: 1 addition & 1 deletion python/pylibcudf/pylibcudf/nvtext/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# the License.
# =============================================================================

set(cython_sources edit_distance.pyx)
set(cython_sources edit_distance.pyx generate_ngrams.pyx)

set(linked_libraries cudf::cudf)
rapids_cython_create_modules(
Expand Down
3 changes: 2 additions & 1 deletion python/pylibcudf/pylibcudf/nvtext/__init__.pxd
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
# Copyright (c) 2024, NVIDIA CORPORATION.

from . cimport edit_distance
from . cimport edit_distance, generate_ngrams

__all__ = [
"edit_distance",
"generate_ngrams",
]
3 changes: 2 additions & 1 deletion python/pylibcudf/pylibcudf/nvtext/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
# Copyright (c) 2024, NVIDIA CORPORATION.

from . import edit_distance
from . import edit_distance, generate_ngrams

__all__ = [
"edit_distance",
"generate_ngrams",
]
12 changes: 12 additions & 0 deletions python/pylibcudf/pylibcudf/nvtext/generate_ngrams.pxd
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Copyright (c) 2024, NVIDIA CORPORATION.

from pylibcudf.column cimport Column
from pylibcudf.libcudf.types cimport size_type
from pylibcudf.scalar cimport Scalar


cpdef Column generate_ngrams(Column input, size_type ngrams, Scalar separator)

cpdef Column generate_character_ngrams(Column input, size_type ngrams=*)

cpdef Column hash_character_ngrams(Column input, size_type ngrams=*)
111 changes: 111 additions & 0 deletions python/pylibcudf/pylibcudf/nvtext/generate_ngrams.pyx
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
# Copyright (c) 2024, NVIDIA CORPORATION.

from libcpp.memory cimport unique_ptr
from libcpp.utility cimport move
from pylibcudf.column cimport Column
from pylibcudf.libcudf.column.column cimport column
from pylibcudf.libcudf.column.column_view cimport column_view
from pylibcudf.libcudf.nvtext.generate_ngrams cimport (
generate_character_ngrams as cpp_generate_character_ngrams,
generate_ngrams as cpp_generate_ngrams,
hash_character_ngrams as cpp_hash_character_ngrams,
)
from pylibcudf.libcudf.scalar.scalar cimport string_scalar
from pylibcudf.libcudf.types cimport size_type
from pylibcudf.scalar cimport Scalar


cpdef Column generate_ngrams(Column input, size_type ngrams, Scalar separator):
"""
Returns a single column of strings by generating ngrams from a strings column.

For details, see :cpp:func:`generate_ngrams`

Parameters
----------
input : Column
Input strings
ngram : size_type
The ngram number to generate
separator : Scalar
The string to use for separating ngram tokens

Returns
-------
Column
New strings columns of tokens
"""
cdef column_view c_strings = input.view()
cdef const string_scalar* c_separator = <const string_scalar*>separator.c_obj.get()
cdef unique_ptr[column] c_result

with nogil:
c_result = move(
cpp_generate_ngrams(
c_strings,
ngrams,
c_separator[0]
)
)
return Column.from_libcudf(move(c_result))


cpdef Column generate_character_ngrams(Column input, size_type ngrams = 2):
"""
Returns a lists column of ngrams of characters within each string.

For details, see :cpp:func:`generate_character_ngrams`

Parameters
----------
input : Column
Input strings
ngram : size_type
The ngram number to generate

Returns
-------
Column
Lists column of strings
"""
cdef column_view c_strings = input.view()
cdef unique_ptr[column] c_result

with nogil:
c_result = move(
cpp_generate_character_ngrams(
c_strings,
ngrams,
)
)
return Column.from_libcudf(move(c_result))

cpdef Column hash_character_ngrams(Column input, size_type ngrams = 2):
"""
Returns a lists column of hash values of the characters in each string

For details, see :cpp:func:`hash_character_ngrams`

Parameters
----------
input : Column
Input strings
ngram : size_type
The ngram number to generate

Returns
-------
Column
Lists column of hash values
"""
cdef column_view c_strings = input.view()
cdef unique_ptr[column] c_result

with nogil:
c_result = move(
cpp_hash_character_ngrams(
c_strings,
ngrams,
)
)
return Column.from_libcudf(move(c_result))
55 changes: 55 additions & 0 deletions python/pylibcudf/pylibcudf/tests/test_nvtext_generate_ngrams.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# Copyright (c) 2024, NVIDIA CORPORATION.

import pyarrow as pa
import pylibcudf as plc
import pytest
from utils import assert_column_eq


@pytest.fixture(scope="module")
def input_col():
arr = ["ab", "cde", "fgh"]
return pa.array(arr)


@pytest.mark.parametrize("ngram", [2, 3])
@pytest.mark.parametrize("sep", ["_", "**", ","])
def test_generate_ngrams(input_col, ngram, sep):
result = plc.nvtext.generate_ngrams.generate_ngrams(
plc.interop.from_arrow(input_col),
ngram,
plc.interop.from_arrow(pa.scalar(sep)),
)
expected = pa.array([f"ab{sep}cde", f"cde{sep}fgh"])
if ngram == 3:
expected = pa.array([f"ab{sep}cde{sep}fgh"])
assert_column_eq(result, expected)


@pytest.mark.parametrize("ngram", [2, 3])
def test_generate_character_ngrams(input_col, ngram):
result = plc.nvtext.generate_ngrams.generate_character_ngrams(
plc.interop.from_arrow(input_col),
ngram,
)
expected = pa.array([["ab"], ["cd", "de"], ["fg", "gh"]])
if ngram == 3:
expected = pa.array([[], ["cde"], ["fgh"]])
assert_column_eq(result, expected)


@pytest.mark.parametrize("ngram", [2, 3])
def test_hash_character_ngrams(input_col, ngram):
Matt711 marked this conversation as resolved.
Show resolved Hide resolved
result = plc.nvtext.generate_ngrams.hash_character_ngrams(
plc.interop.from_arrow(input_col),
ngram,
)
pa_result = plc.interop.to_arrow(result)
if ngram == 2:
assert len(pa_result[0]) == 1
assert len(pa_result[1]) == 2
assert len(pa_result[2]) == 2
else:
assert len(pa_result[0]) == 0
assert len(pa_result[1]) == 1
assert len(pa_result[2]) == 1
Matt711 marked this conversation as resolved.
Show resolved Hide resolved
Loading