Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean unneeded/redudant dtype utils #16309

Merged
merged 7 commits into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions python/cudf/cudf/core/column/column.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@
get_time_unit,
is_column_like,
is_mixed_with_object_dtype,
min_scalar_type,
min_signed_type,
min_unsigned_type,
)
from cudf.utils.utils import _array_ufunc, mask_dtype
Expand Down Expand Up @@ -1351,7 +1351,7 @@ def _label_encoding(
self,
cats: ColumnBase,
dtype: Dtype | None = None,
na_sentinel: ScalarLike | None = None,
na_sentinel: cudf.Scalar | None = None,
):
"""
Convert each value in `self` into an integer code, with `cats`
Expand Down Expand Up @@ -1391,7 +1391,7 @@ def _return_sentinel_column():
return as_column(na_sentinel, dtype=dtype, length=len(self))

if dtype is None:
dtype = min_scalar_type(max(len(cats), na_sentinel), 8)
dtype = min_signed_type(max(len(cats), na_sentinel.value), 8)

if is_mixed_with_object_dtype(self, cats):
return _return_sentinel_column()
Expand Down
12 changes: 8 additions & 4 deletions python/cudf/cudf/core/column/numerical.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,10 @@
from cudf.core.mixins import BinaryOperand
from cudf.errors import MixedTypeError
from cudf.utils.dtypes import (
find_common_type,
min_column_type,
min_signed_type,
np_dtypes_to_pandas_dtypes,
numeric_normalize_types,
)

from .numerical_base import NumericalBaseColumn
Expand Down Expand Up @@ -517,11 +517,15 @@ def find_and_replace(
)
elif len(replacement_col) == 1 and len(to_replace_col) == 0:
return self.copy()
to_replace_col, replacement_col, replaced = numeric_normalize_types(
to_replace_col, replacement_col, self
common_type = find_common_type(
(to_replace_col.dtype, replacement_col.dtype, self.dtype)
)
replaced = self.astype(common_type)
df = cudf.DataFrame._from_data(
{"old": to_replace_col, "new": replacement_col}
{
"old": to_replace_col.astype(common_type),
"new": replacement_col.astype(common_type),
}
)
df = df.drop_duplicates(subset=["old"], keep="last", ignore_index=True)
if df._data["old"].null_count == 1:
Expand Down
22 changes: 4 additions & 18 deletions python/cudf/cudf/core/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,8 +83,7 @@
cudf_dtype_from_pydata_dtype,
find_common_type,
is_column_like,
min_scalar_type,
numeric_normalize_types,
min_signed_type,
)
from cudf.utils.performance_tracking import _performance_tracking
from cudf.utils.utils import GetAttrGetItemMixin, _external_only_api
Expand All @@ -103,20 +102,6 @@
"var": "nanvar",
}

_numeric_reduction_ops = (
"mean",
"min",
"max",
"sum",
"product",
"prod",
"std",
"var",
"kurtosis",
"kurt",
"skew",
)


def _shape_mismatch_error(x, y):
raise ValueError(
Expand Down Expand Up @@ -923,7 +908,8 @@ def _init_from_series_list(self, data, columns, index):
final_index = ensure_index(index)

series_lengths = list(map(len, data))
data = numeric_normalize_types(*data)
common_dtype = find_common_type([obj.dtype for obj in data])
data = [obj.astype(common_dtype) for obj in data]
if series_lengths.count(series_lengths[0]) == len(series_lengths):
# Calculating the final dataframe columns by
# getting union of all `index` of the Series objects.
Expand Down Expand Up @@ -8305,7 +8291,7 @@ def _find_common_dtypes_and_categories(non_null_columns, dtypes):
)._column.unique()
# Set the column dtype to the codes' dtype. The categories
# will be re-assigned at the end
dtypes[idx] = min_scalar_type(len(categories[idx]))
dtypes[idx] = min_signed_type(len(categories[idx]))
# Otherwise raise an error if columns have different dtypes
elif not all(is_dtype_equal(c.dtype, dtypes[idx]) for c in cols):
raise ValueError("All columns must be the same type")
Expand Down
22 changes: 11 additions & 11 deletions python/cudf/cudf/core/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,11 +52,9 @@
from cudf.core.single_column_frame import SingleColumnFrame
from cudf.utils.docutils import copy_docstring
from cudf.utils.dtypes import (
_NUMPY_SCTYPES,
_maybe_convert_to_default_type,
find_common_type,
is_mixed_with_object_dtype,
numeric_normalize_types,
)
from cudf.utils.performance_tracking import _performance_tracking
from cudf.utils.utils import _warn_no_dask_cudf, search_range
Expand Down Expand Up @@ -357,12 +355,10 @@ def _data(self):
@_performance_tracking
def __contains__(self, item):
hash(item)
if isinstance(item, bool) or not isinstance(
item,
tuple(
_NUMPY_SCTYPES["int"] + _NUMPY_SCTYPES["float"] + [int, float]
),
):
if not isinstance(item, (np.floating, np.integer, int, float)):
return False
elif isinstance(item, (np.timedelta64, np.datetime64, bool)):
# Cases that would pass the above check
return False
try:
int_item = int(item)
Expand Down Expand Up @@ -1601,9 +1597,13 @@ def append(self, other):
f"either one of them to same dtypes."
)

if isinstance(self._values, cudf.core.column.NumericalColumn):
if self.dtype != other.dtype:
this, other = numeric_normalize_types(self, other)
if (
isinstance(self._column, cudf.core.column.NumericalColumn)
and self.dtype != other.dtype
):
common_type = find_common_type((self.dtype, other.dtype))
this = this.astype(common_type)
other = other.astype(common_type)
to_concat = [this, other]

return self._concat(to_concat)
Expand Down
26 changes: 6 additions & 20 deletions python/cudf/cudf/utils/dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,10 +89,6 @@
BOOL_TYPES = {"bool"}
ALL_TYPES = NUMERIC_TYPES | DATETIME_TYPES | TIMEDELTA_TYPES | OTHER_TYPES

# The NumPy scalar types are a bit of a mess as they align with the C types
# so for now we use the `sctypes` dict (although it was made private in 2.0)
_NUMPY_SCTYPES = np.sctypes if hasattr(np, "sctypes") else np._core.sctypes


def np_to_pa_dtype(dtype):
"""Util to convert numpy dtype to PyArrow dtype."""
Expand All @@ -114,12 +110,6 @@ def np_to_pa_dtype(dtype):
return _np_pa_dtypes[cudf.dtype(dtype).type]


def numeric_normalize_types(*args):
"""Cast all args to a common type using numpy promotion logic"""
dtype = np.result_type(*[a.dtype for a in args])
return [a.astype(dtype) for a in args]


def _find_common_type_decimal(dtypes):
# Find the largest scale and the largest difference between
# precision and scale of the columns to be concatenated
Expand Down Expand Up @@ -330,32 +320,28 @@ def can_convert_to_column(obj):
return is_column_like(obj) or cudf.api.types.is_list_like(obj)


def min_scalar_type(a, min_size=8):
return min_signed_type(a, min_size=min_size)


def min_signed_type(x, min_size=8):
def min_signed_type(x: int, min_size: int = 8) -> np.dtype:
"""
Return the smallest *signed* integer dtype
that can represent the integer ``x``
"""
for int_dtype in _NUMPY_SCTYPES["int"]:
for int_dtype in (np.int8, np.int16, np.int32, np.int64):
if (cudf.dtype(int_dtype).itemsize * 8) >= min_size:
if np.iinfo(int_dtype).min <= x <= np.iinfo(int_dtype).max:
return int_dtype
return np.dtype(int_dtype)
# resort to using `int64` and let numpy raise appropriate exception:
return np.int64(x).dtype


def min_unsigned_type(x, min_size=8):
def min_unsigned_type(x: int, min_size: int = 8) -> np.dtype:
"""
Return the smallest *unsigned* integer dtype
that can represent the integer ``x``
"""
for int_dtype in _NUMPY_SCTYPES["uint"]:
for int_dtype in (np.uint8, np.uint16, np.uint32, np.uint64):
if (cudf.dtype(int_dtype).itemsize * 8) >= min_size:
if 0 <= x <= np.iinfo(int_dtype).max:
return int_dtype
return np.dtype(int_dtype)
# resort to using `uint64` and let numpy raise appropriate exception:
return np.uint64(x).dtype

Expand Down
Loading