Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve performance of Series.to_numpy/to_cupy #15792

Merged
merged 3 commits into from
May 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/_base_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ def name(self):
raise NotImplementedError

@property # type: ignore
def ndim(self): # noqa: D401
def ndim(self) -> int: # noqa: D401
"""Number of dimensions of the underlying data, by definition 1."""
return 1

Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -1234,7 +1234,7 @@ def dtypes(self):
return pd.Series(self._dtypes, dtype="object")

@property
def ndim(self):
def ndim(self) -> int:
"""Dimension of the data. DataFrame ndim is always 2."""
return 2

Expand Down
85 changes: 49 additions & 36 deletions python/cudf/cudf/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import itertools
import operator
import pickle
import types
import warnings
from collections import abc
from typing import (
Expand Down Expand Up @@ -91,6 +92,10 @@ def _dtypes(self):
zip(self._data.names, (col.dtype for col in self._data.columns))
)

@property
def ndim(self) -> int:
raise NotImplementedError()

@_cudf_nvtx_annotate
def serialize(self):
# TODO: See if self._data can be serialized outright
Expand Down Expand Up @@ -417,51 +422,60 @@ def __arrow_array__(self, type=None):
@_cudf_nvtx_annotate
def _to_array(
self,
get_column_values: Callable,
make_empty_matrix: Callable,
get_array: Callable,
module: types.ModuleType,
copy: bool,
dtype: Union[Dtype, None] = None,
na_value=None,
) -> Union[cupy.ndarray, np.ndarray]:
) -> Union[cupy.ndarray, numpy.ndarray]:
# Internal function to implement to_cupy and to_numpy, which are nearly
# identical except for the attribute they access to generate values.

def get_column_values_na(col):
def to_array(
col: ColumnBase, dtype: np.dtype
) -> Union[cupy.ndarray, numpy.ndarray]:
if na_value is not None:
col = col.fillna(na_value)
return get_column_values(col)
array = get_array(col)
casted_array = module.asarray(array, dtype=dtype)
if copy and casted_array is array:
# Don't double copy after asarray
casted_array = casted_array.copy()
return casted_array

# Early exit for an empty Frame.
ncol = self._num_columns
if ncol == 0:
return make_empty_matrix(
shape=(len(self), ncol), dtype=np.dtype("float64"), order="F"
return module.empty(
shape=(len(self), ncol),
dtype=numpy.dtype("float64"),
order="F",
)

if dtype is None:
dtypes = [col.dtype for col in self._data.values()]
for dtype in dtypes:
if isinstance(
dtype,
(
cudf.ListDtype,
cudf.core.dtypes.DecimalDtype,
cudf.StructDtype,
),
):
raise NotImplementedError(
f"{dtype} cannot be exposed as a cupy array"
)
dtype = find_common_type(dtypes)
if ncol == 1:
dtype = next(iter(self._data.values())).dtype
else:
dtype = find_common_type(
[col.dtype for col in self._data.values()]
)

matrix = make_empty_matrix(
shape=(len(self), ncol), dtype=dtype, order="F"
)
for i, col in enumerate(self._data.values()):
# TODO: col.values may fail if there is nullable data or an
# unsupported dtype. We may want to catch and provide a more
# suitable error.
matrix[:, i] = get_column_values_na(col)
return matrix
if not isinstance(dtype, numpy.dtype):
raise NotImplementedError(
f"{dtype} cannot be exposed as an array"
)

if self.ndim == 1:
return to_array(self._data.columns[0], dtype)
else:
matrix = module.empty(
shape=(len(self), ncol), dtype=dtype, order="F"
)
for i, col in enumerate(self._data.values()):
# TODO: col.values may fail if there is nullable data or an
# unsupported dtype. We may want to catch and provide a more
# suitable error.
matrix[:, i] = to_array(col, dtype)
return matrix

# TODO: As of now, calling cupy.asarray is _much_ faster than calling
# to_cupy. We should investigate the reasons why and whether we can provide
Expand Down Expand Up @@ -496,10 +510,9 @@ def to_cupy(
cupy.ndarray
"""
return self._to_array(
(lambda col: col.values.copy())
if copy
else (lambda col: col.values),
cupy.empty,
lambda col: col.values,
cupy,
copy,
dtype,
na_value,
)
Expand Down Expand Up @@ -536,7 +549,7 @@ def to_numpy(
)

return self._to_array(
(lambda col: col.values_host), np.empty, dtype, na_value
lambda col: col.values_host, numpy, copy, dtype, na_value
)

@_cudf_nvtx_annotate
Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/multiindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -563,7 +563,7 @@ def levels(self):

@property # type: ignore
@_cudf_nvtx_annotate
def ndim(self):
def ndim(self) -> int:
"""Dimension of the data. For MultiIndex ndim is always 2."""
return 2

Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/single_column_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def name(self, value):

@property # type: ignore
@_cudf_nvtx_annotate
def ndim(self): # noqa: D401
def ndim(self) -> int: # noqa: D401
"""Number of dimensions of the underlying data, by definition 1."""
return 1

Expand Down
Loading