Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deprecate to/from_dask_dataframe APIs in dask-cudf #15592

Merged
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions docs/dask_cudf/source/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,11 @@ Creating and storing DataFrames
of DataFrames from a variety of storage formats. For on-disk data that
are not supported directly in Dask-cuDF, we recommend using Dask's
data reading facilities, followed by calling
:func:`.from_dask_dataframe` to obtain a Dask-cuDF object.
:meth:`*.to_backend("cudf")` to obtain a Dask-cuDF object.

.. automodule:: dask_cudf
:members:
from_cudf,
from_dask_dataframe,
from_delayed,
read_csv,
read_json,
Expand Down
30 changes: 26 additions & 4 deletions python/dask_cudf/dask_cudf/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,9 +55,20 @@ def __repr__(self):

@_dask_cudf_nvtx_annotate
def to_dask_dataframe(self, **kwargs):
"""Create a dask.dataframe object from a dask_cudf object"""
nullable = kwargs.get("nullable", False)
return self.map_partitions(M.to_pandas, nullable=nullable)
"""Create a dask.dataframe object from a dask_cudf object

WARNING: This API is deprecated, and may not work properly
when query-planning is active. Please use `*.to_backend("pandas")`
to convert the underlying data to pandas.
"""

warnings.warn(
"The `to_dask_dataframe` API is now deprecated. "
"Please use `*.to_backend('pandas')` instead.",
FutureWarning,
)

return self.to_backend("pandas", **kwargs)


concat = dd.concat
Expand Down Expand Up @@ -733,6 +744,10 @@ def from_dask_dataframe(df):
Convert a Dask :class:`dask.dataframe.DataFrame` to a Dask-cuDF
one.

WARNING: This API is deprecated, and may not work properly
when query-planning is active. Please use `*.to_backend("cudf")`
to convert the underlying data to cudf.

Parameters
----------
df : dask.dataframe.DataFrame
Expand All @@ -742,7 +757,14 @@ def from_dask_dataframe(df):
-------
dask_cudf.DataFrame : A new Dask collection backed by cuDF objects
"""
return df.map_partitions(cudf.from_pandas)

warnings.warn(
"The `from_dask_dataframe` API is now deprecated. "
"Please use `*.to_backend('cudf')` instead.",
FutureWarning,
)

return df.to_backend("cudf")


for name in (
Expand Down
25 changes: 22 additions & 3 deletions python/dask_cudf/dask_cudf/expr/_collection.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Copyright (c) 2024, NVIDIA CORPORATION.

import warnings
from functools import cached_property

from dask_expr import (
Expand Down Expand Up @@ -49,7 +50,25 @@ def var(
)


class DataFrame(VarMixin, DXDataFrame):
class CommonMixin:
charlesbluca marked this conversation as resolved.
Show resolved Hide resolved
def to_dask_dataframe(self, **kwargs):
"""Create a dask.dataframe object from a dask_cudf object

WARNING: This API is deprecated, and may not work properly.
Please use `*.to_backend("pandas")` to convert the
underlying data to pandas.
"""

warnings.warn(
"The `to_dask_dataframe` API is now deprecated. "
"Please use `*.to_backend('pandas')` instead.",
FutureWarning,
)

return self.to_backend("pandas", **kwargs)


class DataFrame(VarMixin, CommonMixin, DXDataFrame):
@classmethod
def from_dict(cls, *args, **kwargs):
with config.set({"dataframe.backend": "cudf"}):
Expand Down Expand Up @@ -94,7 +113,7 @@ def read_text(*args, **kwargs):
return from_legacy_dataframe(ddf)


class Series(VarMixin, DXSeries):
class Series(VarMixin, CommonMixin, DXSeries):
def groupby(self, by, **kwargs):
from dask_cudf.expr._groupby import SeriesGroupBy

Expand All @@ -113,7 +132,7 @@ def struct(self):
return StructMethods(self)


class Index(DXIndex):
class Index(CommonMixin, DXIndex):
pass # Same as pandas (for now)


Expand Down
2 changes: 1 addition & 1 deletion python/dask_cudf/dask_cudf/io/tests/test_parquet.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ def test_roundtrip_from_dask_none_index_false(tmpdir):
@pytest.mark.parametrize("write_meta", [True, False])
def test_roundtrip_from_dask_cudf(tmpdir, write_meta):
tmpdir = str(tmpdir)
gddf = dask_cudf.from_dask_dataframe(ddf)
gddf = ddf.to_backend("cudf")
gddf.to_parquet(tmpdir, write_metadata_file=write_meta)

gddf2 = dask_cudf.read_parquet(tmpdir, calculate_divisions=True)
Expand Down
24 changes: 24 additions & 0 deletions python/dask_cudf/dask_cudf/tests/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,30 @@ def test_from_dict_backend_dispatch():
dd.assert_eq(expect, ddf)


def test_to_dask_dataframe_deprecated():
gdf = cudf.DataFrame({"a": range(100)})
ddf = dd.from_pandas(gdf, npartitions=2)
assert isinstance(ddf._meta, cudf.DataFrame)

with pytest.warns(FutureWarning, match="API is now deprecated"):
assert isinstance(
ddf.to_dask_dataframe()._meta,
pd.DataFrame,
)


def test_from_dask_dataframe_deprecated():
gdf = pd.DataFrame({"a": range(100)})
ddf = dd.from_pandas(gdf, npartitions=2)
assert isinstance(ddf._meta, pd.DataFrame)

with pytest.warns(FutureWarning, match="API is now deprecated"):
assert isinstance(
dask_cudf.from_dask_dataframe(ddf)._meta,
cudf.DataFrame,
)


def test_to_backend():
np.random.seed(0)
data = {
Expand Down
4 changes: 2 additions & 2 deletions python/dask_cudf/dask_cudf/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -562,9 +562,9 @@ def test_groupby_reset_index_string_name():
def test_groupby_categorical_key():
# See https://github.com/rapidsai/cudf/issues/4608
df = dask.datasets.timeseries()
gddf = dask_cudf.from_dask_dataframe(df)
gddf = df.to_backend("cudf")
gddf["name"] = gddf["name"].astype("category")
ddf = gddf.to_dask_dataframe()
ddf = gddf.to_backend("pandas")

got = gddf.groupby("name", sort=True).agg(
{"x": ["mean", "max"], "y": ["mean", "count"]}
Expand Down
Loading