Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix arrow-based round trip of empty dataframes #15373

Merged
merged 3 commits into from
Mar 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 22 additions & 18 deletions python/cudf/cudf/_lib/utils.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ cpdef generate_pandas_metadata(table, index):
types = []
index_levels = []
index_descriptors = []

columns_to_convert = list(table._columns)
# Columns
for name, col in table._data.items():
if cudf.get_option("mode.pandas_compatible"):
Expand Down Expand Up @@ -90,6 +90,7 @@ cpdef generate_pandas_metadata(table, index):
types.append(np_to_pa_dtype(col.dtype))

# Indexes
materialize_index = False
if index is not False:
for level, name in enumerate(table._index.names):
if isinstance(table._index, cudf.core.multiindex.MultiIndex):
Expand All @@ -107,22 +108,26 @@ cpdef generate_pandas_metadata(table, index):
"step": table.index.step,
}
else:
materialize_index = True
# When `index=True`, RangeIndex needs to be materialized.
materialized_idx = cudf.Index(idx._values, name=idx.name)
descr = \
_index_level_name(
index_name=materialized_idx.name,
level=level,
column_names=col_names
)
index_levels.append(materialized_idx)
else:
descr = \
_index_level_name(
index_name=idx.name,
descr = _index_level_name(
index_name=materialized_idx.name,
level=level,
column_names=col_names
)
index_levels.append(materialized_idx)
columns_to_convert.append(materialized_idx._values)
col_names.append(descr)
types.append(np_to_pa_dtype(materialized_idx.dtype))
else:
descr = _index_level_name(
index_name=idx.name,
level=level,
column_names=col_names
)
columns_to_convert.append(idx._values)
col_names.append(descr)
if isinstance(idx.dtype, cudf.CategoricalDtype):
raise ValueError(
"'category' column dtypes are currently not "
Expand All @@ -141,17 +146,16 @@ cpdef generate_pandas_metadata(table, index):
types.append(np_to_pa_dtype(idx.dtype))

index_levels.append(idx)
col_names.append(name)
index_descriptors.append(descr)

df_meta = table.head(0)
if materialize_index:
df_meta.index = df_meta.index._as_int_index()
metadata = pa.pandas_compat.construct_metadata(
columns_to_convert=[
col
for col in table._columns
],
columns_to_convert=columns_to_convert,
# It is OKAY to do `.head(0).to_pandas()` because
# this method will extract `.columns` metadata only
df=table.head(0).to_pandas(),
df=df_meta.to_pandas(),
rjzamora marked this conversation as resolved.
Show resolved Hide resolved
column_names=col_names,
index_levels=index_levels,
index_descriptors=index_descriptors,
Expand Down
43 changes: 24 additions & 19 deletions python/cudf/cudf/core/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -5485,14 +5485,18 @@ def from_arrow(cls, table):
return out

@_cudf_nvtx_annotate
def to_arrow(self, preserve_index=True):
def to_arrow(self, preserve_index=None):
"""
Convert to a PyArrow Table.

Parameters
----------
preserve_index : bool, default True
whether index column and its meta data needs to be saved or not
preserve_index : bool, optional
whether index column and its meta data needs to be saved
or not. The default of None will store the index as a
column, except for a RangeIndex which is stored as
metadata only. Setting preserve_index to True will force
a RangeIndex to be materialized.

Returns
-------
Expand Down Expand Up @@ -5523,34 +5527,35 @@ def to_arrow(self, preserve_index=True):

data = self.copy(deep=False)
index_descr = []
if preserve_index:
if isinstance(self.index, cudf.RangeIndex):
write_index = preserve_index is not False
keep_range_index = write_index and preserve_index is None
index = self.index
if write_index:
if isinstance(index, cudf.RangeIndex) and keep_range_index:
descr = {
"kind": "range",
"name": self.index.name,
"start": self.index._start,
"stop": self.index._stop,
"name": index.name,
"start": index._start,
"stop": index._stop,
"step": 1,
}
else:
if isinstance(self.index, MultiIndex):
if isinstance(index, cudf.RangeIndex):
index = index._as_int_index()
index.name = "__index_level_0__"
if isinstance(index, MultiIndex):
gen_names = tuple(
f"level_{i}"
for i, _ in enumerate(self.index._data.names)
f"level_{i}" for i, _ in enumerate(index._data.names)
)
else:
gen_names = (
self.index.names
if self.index.name is not None
else ("index",)
index.names if index.name is not None else ("index",)
)
for gen_name, col_name in zip(
gen_names, self.index._data.names
):
for gen_name, col_name in zip(gen_names, index._data.names):
data._insert(
data.shape[1],
gen_name,
self.index._data[col_name],
index._data[col_name],
)
descr = gen_names[0]
index_descr.append(descr)
Expand All @@ -5560,7 +5565,7 @@ def to_arrow(self, preserve_index=True):
columns_to_convert=[self[col] for col in self._data.names],
df=self,
column_names=out.schema.names,
index_levels=[self.index],
index_levels=[index],
index_descriptors=index_descr,
preserve_index=preserve_index,
types=out.schema.types,
Expand Down
59 changes: 58 additions & 1 deletion python/cudf/cudf/tests/dataframe/test_io_serialization.py
Original file line number Diff line number Diff line change
@@ -1 +1,58 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
import contextlib
from io import BytesIO

import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
import pytest

import cudf
from cudf.testing._utils import assert_eq


@pytest.mark.parametrize(
"index",
[range(1, 11), list(range(1, 11)), range(1, 11)[::2]],
ids=["RangeIndex", "IntIndex", "StridedRange"],
)
@pytest.mark.parametrize("write_index", [False, True, None])
@pytest.mark.parametrize("empty", [False, True], ids=["nonempty", "empty"])
def test_dataframe_parquet_roundtrip(index, write_index, empty):
if empty:
data = {}
else:
data = {"a": [i * 2 for i in index]}
df = cudf.DataFrame(data=data, index=index)
pf = pd.DataFrame(data=data, index=index)
gpu_buf = BytesIO()
cpu_buf = BytesIO()

df.to_parquet(gpu_buf, index=write_index)
pf.to_parquet(cpu_buf, index=write_index)
gpu_table = pq.read_table(gpu_buf)
cpu_table = pq.read_table(cpu_buf)
metadata_equal = (
gpu_table.schema.pandas_metadata == cpu_table.schema.pandas_metadata
)
if empty and write_index is not False:
# https://github.com/rapidsai/cudf/issues/15372
ctx = pytest.raises(AssertionError)
else:
ctx = contextlib.nullcontext()
with ctx:
assert metadata_equal

gpu_read = cudf.read_parquet(gpu_buf)
cpu_read = cudf.read_parquet(cpu_buf)
with ctx:
assert_eq(gpu_read, cpu_read)


@pytest.mark.parametrize("preserve_index", [False, True, None])
def test_dataframe_to_arrow_preserve_index(preserve_index):
df = cudf.DataFrame({"x": ["cat", "dog"] * 5})
pf = df.to_pandas()
expect = pa.Table.from_pandas(pf, preserve_index=preserve_index).schema
got = df.to_arrow(preserve_index=preserve_index).schema
assert expect == got
14 changes: 11 additions & 3 deletions python/cudf/cudf/tests/test_parquet.py
Original file line number Diff line number Diff line change
Expand Up @@ -2442,9 +2442,17 @@ def test_parquet_index(pdf, index):
run_parquet_index(pdf, index)


@pytest.mark.parametrize("index", [None, True])
@pytest.mark.xfail(
reason="https://github.com/rapidsai/cudf/issues/12243",
@pytest.mark.parametrize(
"index",
[
pytest.param(
None,
marks=pytest.mark.xfail(
reason="https://github.com/apache/arrow/issues/40743"
),
),
True,
],
)
def test_parquet_index_empty(index):
pdf = pd.DataFrame(index=pd.RangeIndex(0, 10, 1))
Expand Down
Loading