Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adjust test_binops for pandas 2.2 #15078

Merged
merged 4 commits into from
Feb 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions python/cudf/cudf/core/column/datetime.py
Original file line number Diff line number Diff line change
Expand Up @@ -567,9 +567,7 @@ def _binaryop(self, other: ColumnBinaryOperand, op: str) -> ColumnBase:
if other is NotImplemented:
return NotImplemented
if isinstance(other, cudf.DateOffset):
return other._datetime_binop(self, op, reflect=reflect).astype(
self.dtype
)
return other._datetime_binop(self, op, reflect=reflect)

# We check this on `other` before reflection since we already know the
# dtype of `self`.
Expand Down
96 changes: 71 additions & 25 deletions python/cudf/cudf/tests/test_binops.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@

import cudf
from cudf import Series
from cudf.core._compat import PANDAS_GE_220
from cudf.core.buffer.spill_manager import get_global_manager
from cudf.core.index import as_index
from cudf.testing import _utils as utils
Expand Down Expand Up @@ -824,11 +825,21 @@ def test_operator_func_between_series_logical(
@pytest.mark.parametrize("fill_value", [None, 1.0])
@pytest.mark.parametrize("use_cudf_scalar", [False, True])
def test_operator_func_series_and_scalar_logical(
dtype, func, has_nulls, scalar, fill_value, use_cudf_scalar
request, dtype, func, has_nulls, scalar, fill_value, use_cudf_scalar
):
gdf_series = utils.gen_rand_series(
dtype, 1000, has_nulls=has_nulls, stride=10000
request.applymarker(
pytest.mark.xfail(
PANDAS_GE_220
and fill_value == 1.0
and scalar is np.nan
and (has_nulls or (not has_nulls and func not in {"eq", "ne"})),
reason="https://github.com/pandas-dev/pandas/issues/57447",
)
)
if has_nulls:
gdf_series = cudf.Series([-1.0, 0, cudf.NA, 1.1], dtype=dtype)
else:
gdf_series = cudf.Series([-1.0, 0, 10.5, 1.1], dtype=dtype)
pdf_series = gdf_series.to_pandas(nullable=True)
gdf_series_result = getattr(gdf_series, func)(
cudf.Scalar(scalar) if use_cudf_scalar else scalar,
Expand Down Expand Up @@ -1684,16 +1695,6 @@ def test_scalar_null_binops(op, dtype_l, dtype_r):
assert result.dtype == valid_result.dtype


@pytest.mark.parametrize(
"date_col",
[
[
"2000-01-01 00:00:00.012345678",
"2000-01-31 00:00:00.012345678",
"2000-02-29 00:00:00.012345678",
]
],
)
@pytest.mark.parametrize("n_periods", [0, 1, -1, 12, -12])
@pytest.mark.parametrize(
"frequency",
Expand All @@ -1714,8 +1715,40 @@ def test_scalar_null_binops(op, dtype_l, dtype_r):
)
@pytest.mark.parametrize("op", [operator.add, operator.sub])
def test_datetime_dateoffset_binaryop(
date_col, n_periods, frequency, dtype, op
request, n_periods, frequency, dtype, op
):
request.applymarker(
pytest.mark.xfail(
PANDAS_GE_220
and dtype in {"datetime64[ms]", "datetime64[s]"}
and frequency == "microseconds"
and n_periods == 0,
reason="https://github.com/pandas-dev/pandas/issues/57448",
)
)
request.applymarker(
pytest.mark.xfail(
not PANDAS_GE_220
and dtype in {"datetime64[ms]", "datetime64[s]"}
and frequency in ("microseconds", "nanoseconds")
and n_periods != 0,
reason="https://github.com/pandas-dev/pandas/pull/55595",
)
)
request.applymarker(
pytest.mark.xfail(
not PANDAS_GE_220
and dtype == "datetime64[us]"
and frequency == "nanoseconds"
and n_periods != 0,
reason="https://github.com/pandas-dev/pandas/pull/55595",
)
)
date_col = [
"2000-01-01 00:00:00.012345678",
"2000-01-31 00:00:00.012345678",
"2000-02-29 00:00:00.012345678",
]
gsr = cudf.Series(date_col, dtype=dtype)
psr = gsr.to_pandas()

Expand Down Expand Up @@ -1776,16 +1809,6 @@ def test_datetime_dateoffset_binaryop_multiple(date_col, kwargs, op):
utils.assert_eq(expect, got)


@pytest.mark.parametrize(
"date_col",
[
[
"2000-01-01 00:00:00.012345678",
"2000-01-31 00:00:00.012345678",
"2000-02-29 00:00:00.012345678",
]
],
)
@pytest.mark.parametrize("n_periods", [0, 1, -1, 12, -12])
@pytest.mark.parametrize(
"frequency",
Expand All @@ -1805,8 +1828,31 @@ def test_datetime_dateoffset_binaryop_multiple(date_col, kwargs, op):
["datetime64[ns]", "datetime64[us]", "datetime64[ms]", "datetime64[s]"],
)
def test_datetime_dateoffset_binaryop_reflected(
date_col, n_periods, frequency, dtype
request, n_periods, frequency, dtype
):
request.applymarker(
pytest.mark.xfail(
not PANDAS_GE_220
and dtype in {"datetime64[ms]", "datetime64[s]"}
and frequency in ("microseconds", "nanoseconds")
and n_periods != 0,
reason="https://github.com/pandas-dev/pandas/pull/55595",
)
)
request.applymarker(
pytest.mark.xfail(
not PANDAS_GE_220
and dtype == "datetime64[us]"
and frequency == "nanoseconds"
and n_periods != 0,
reason="https://github.com/pandas-dev/pandas/pull/55595",
)
)
date_col = [
"2000-01-01 00:00:00.012345678",
"2000-01-31 00:00:00.012345678",
"2000-02-29 00:00:00.012345678",
]
gsr = cudf.Series(date_col, dtype=dtype)
psr = gsr.to_pandas() # converts to nanos

Expand Down
Loading