Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor cudf.Series.__init__ #14450

Merged
merged 17 commits into from
Jan 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions python/cudf/cudf/core/_base_index.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2021-2023, NVIDIA CORPORATION.
# Copyright (c) 2021-2024, NVIDIA CORPORATION.

from __future__ import annotations

Expand Down Expand Up @@ -1836,7 +1836,7 @@ def __array_function__(self, func, types, args, kwargs):
return NotImplemented

@classmethod
def from_pandas(cls, index, nan_as_null=no_default):
def from_pandas(cls, index: pd.Index, nan_as_null=no_default):
"""
Convert from a Pandas Index.

Expand Down
4 changes: 2 additions & 2 deletions python/cudf/cudf/core/multiindex.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2019-2023, NVIDIA CORPORATION.
# Copyright (c) 2019-2024, NVIDIA CORPORATION.

from __future__ import annotations

Expand Down Expand Up @@ -1601,7 +1601,7 @@ def to_pandas(self, *, nullable: bool = False) -> pd.MultiIndex:

@classmethod
@_cudf_nvtx_annotate
def from_pandas(cls, multiindex, nan_as_null=no_default):
def from_pandas(cls, multiindex: pd.MultiIndex, nan_as_null=no_default):
"""
Convert from a Pandas MultiIndex

Expand Down
131 changes: 53 additions & 78 deletions python/cudf/cudf/core/series.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2018-2023, NVIDIA CORPORATION.
# Copyright (c) 2018-2024, NVIDIA CORPORATION.

from __future__ import annotations

Expand Down Expand Up @@ -57,7 +57,6 @@
TimeDeltaColumn,
arange,
as_column,
column,
full,
)
from cudf.core.column.categorical import (
Expand Down Expand Up @@ -202,7 +201,6 @@ def __getitem__(self, arg):

@_cudf_nvtx_annotate
def __setitem__(self, key, value):
from cudf.core.column import column

if isinstance(key, tuple):
key = list(key)
Expand Down Expand Up @@ -264,7 +262,7 @@ def __setitem__(self, key, value):
self._frame._column.dtype, (cudf.ListDtype, cudf.StructDtype)
)
):
value = column.as_column(value)
value = as_column(value)

if (
(
Expand Down Expand Up @@ -568,7 +566,7 @@ def from_masked_array(cls, data, mask, null_count=None):
4 14
dtype: int64
"""
col = column.as_column(data).set_mask(mask)
col = as_column(data).set_mask(mask)
return cls(data=col)

@_cudf_nvtx_annotate
Expand All @@ -593,73 +591,33 @@ def __init__(
"to silence this warning.",
FutureWarning,
)
if isinstance(data, pd.Series):
if name is None:
name = data.name
if isinstance(data.index, pd.MultiIndex):
index = cudf.from_pandas(data.index)
else:
index = as_index(data.index)
elif isinstance(data, pd.Index):
if name is None:
name = data.name
data = as_column(data, nan_as_null=nan_as_null, dtype=dtype)
elif isinstance(data, BaseIndex):
if name is None:
name = data.name
data = data._values
if dtype is not None:
data = data.astype(dtype)
index_from_data = None
name_from_data = None
if data is None:
data = {}

if isinstance(data, (pd.Series, pd.Index, BaseIndex, Series)):
if copy:
data = data.copy(deep=True)
name_from_data = data.name
column = as_column(data, nan_as_null=nan_as_null, dtype=dtype)
if isinstance(data, (pd.Series, Series)):
index_from_data = as_index(data.index)
elif isinstance(data, ColumnAccessor):
raise TypeError(
"Use cudf.Series._from_data for constructing a Series from "
"ColumnAccessor"
)

if isinstance(data, Series):
if index is not None:
data = data.reindex(index)
else:
index = data._index
if name is None:
name = data.name
data = data._column
if copy:
data = data.copy(deep=True)
if dtype is not None:
data = data.astype(dtype)

if isinstance(data, dict):
elif isinstance(data, dict):
if not data:
current_index = RangeIndex(0)
column = as_column(data, nan_as_null=nan_as_null, dtype=dtype)
index_from_data = RangeIndex(0)
else:
current_index = data.keys()
if index is not None:
series = Series(
list(data.values()),
nan_as_null=nan_as_null,
dtype=dtype,
index=current_index,
)
new_index = as_index(index)
if not series.index.equals(new_index):
series = series.reindex(new_index)
data = series._column
index = series._index
else:
data = column.as_column(
column = as_column(
list(data.values()), nan_as_null=nan_as_null, dtype=dtype
)
index = current_index
if data is None:
if index is not None:
data = column.column_empty(
row_count=len(index), dtype=None, masked=True
)
else:
data = {}

if not isinstance(data, ColumnBase):
index_from_data = as_index(list(data.keys()))
else:
# Using `getattr_static` to check if
# `data` is on device memory and perform
# a deep copy later. This is different
Expand All @@ -677,25 +635,42 @@ def __init__(
)
is property
)
data = column.as_column(
column = as_column(
data,
nan_as_null=nan_as_null,
dtype=dtype,
length=len(index) if index is not None else None,
)
if copy and has_cai:
data = data.copy(deep=True)
else:
if dtype is not None:
data = data.astype(dtype)
column = column.copy(deep=True)

if index is not None and not isinstance(index, BaseIndex):
index = as_index(index)
assert isinstance(column, ColumnBase)

if dtype is not None:
column = column.astype(dtype)
Comment on lines +649 to +650
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

After passing dtype into every as_column call above, why do we still need to cast the column type here? Just curious!

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is mostly defensive for now as I am not sure if as_column currently always respects dtype casting (e.g. I found a case recently in https://github.com/rapidsai/cudf/pull/14686/files) but I think this could be removed in the future!


assert isinstance(data, ColumnBase)
if name_from_data is not None and name is None:
name = name_from_data

super().__init__({name: data})
self._index = RangeIndex(len(data)) if index is None else index
if index is not None:
index = as_index(index)

if index_from_data is not None:
first_index = index_from_data
second_index = index
elif index is None:
first_index = RangeIndex(len(column))
second_index = None
else:
first_index = index
second_index = None

super().__init__({name: column}, index=first_index)
if second_index is not None:
# TODO: This there a better way to do this?
reindexed = self.reindex(index=second_index, copy=False)
self._data = reindexed._data
self._index = second_index
self._check_data_index_length_match()

@classmethod
Expand All @@ -717,7 +692,7 @@ def __contains__(self, item):

@classmethod
@_cudf_nvtx_annotate
def from_pandas(cls, s, nan_as_null=no_default):
def from_pandas(cls, s: pd.Series, nan_as_null=no_default):
"""
Convert from a Pandas Series.

Expand Down Expand Up @@ -760,7 +735,7 @@ def from_pandas(cls, s, nan_as_null=no_default):
False if cudf.get_option("mode.pandas_compatible") else None
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
warnings.simplefilter("ignore", FutureWarning)
result = cls(s, nan_as_null=nan_as_null)
return result

Expand Down Expand Up @@ -5250,16 +5225,16 @@ def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
b = b.reindex(a.index)
index = as_index(a.index)

a_col = column.as_column(a)
a_col = as_column(a)
a_array = cupy.asarray(a_col.data_array_view(mode="read"))

b_col = column.as_column(b)
b_col = as_column(b)
b_array = cupy.asarray(b_col.data_array_view(mode="read"))

result = cupy.isclose(
a=a_array, b=b_array, rtol=rtol, atol=atol, equal_nan=equal_nan
)
result_col = column.as_column(result)
result_col = as_column(result)

if a_col.null_count and b_col.null_count:
a_nulls = a_col.isnull()
Expand Down
41 changes: 40 additions & 1 deletion python/cudf/cudf/tests/test_series.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2020-2023, NVIDIA CORPORATION.
# Copyright (c) 2020-2024, NVIDIA CORPORATION.

import decimal
import hashlib
Expand Down Expand Up @@ -2683,3 +2683,42 @@ def test_series_duplicate_index_reindex():
lfunc_args_and_kwargs=([10, 11, 12, 13], {}),
rfunc_args_and_kwargs=([10, 11, 12, 13], {}),
)


@pytest.mark.parametrize(
"klass", [cudf.Series, cudf.Index, pd.Series, pd.Index]
)
def test_series_from_named_object_name_priority(klass):
result = cudf.Series(klass([1], name="a"), name="b")
assert result.name == "b"


@pytest.mark.parametrize(
"data",
[
{"a": 1, "b": 2, "c": 3},
cudf.Series([1, 2, 3], index=list("abc")),
pd.Series([1, 2, 3], index=list("abc")),
],
)
def test_series_from_object_with_index_index_arg_reindex(data):
result = cudf.Series(data, index=list("bca"))
expected = cudf.Series([2, 3, 1], index=list("bca"))
assert_eq(result, expected)


@pytest.mark.parametrize(
"data",
[
{0: 1, 1: 2, 2: 3},
cudf.Series([1, 2, 3]),
cudf.Index([1, 2, 3]),
pd.Series([1, 2, 3]),
pd.Index([1, 2, 3]),
[1, 2, 3],
],
)
def test_series_dtype_astypes(data):
result = cudf.Series(data, dtype="float64")
expected = cudf.Series([1.0, 2.0, 3.0])
assert_eq(result, expected)