Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update contains_table to experimental row hasher and equality comparator #13119

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 18 additions & 156 deletions cpp/src/search/contains_table.cu
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,7 @@

#include <cudf/detail/join.hpp>
#include <cudf/detail/null_mask.hpp>
#include <cudf/detail/structs/utilities.hpp>
#include <cudf/table/experimental/row_operators.cuh>
#include <cudf/table/table_device_view.cuh>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>

Expand Down Expand Up @@ -156,12 +154,11 @@ void dispatch_nan_comparator(nan_equality compare_nans, Func&& func)
}
}

} // namespace

/**
* @brief Check if rows in the given `needles` table exist in the `haystack` table.
*
* This function is designed specifically to work with input tables having lists column(s) at
* arbitrarily nested levels.
*
* @param haystack The table containing the search space
* @param needles A table of rows whose existence to check in the search space
* @param compare_nulls Control whether nulls should be compared as equal or not
Expand All @@ -170,12 +167,12 @@ void dispatch_nan_comparator(nan_equality compare_nans, Func&& func)
* @param mr Device memory resource used to allocate the returned vector
* @return A vector of bools indicating if each row in `needles` has matching rows in `haystack`
*/
rmm::device_uvector<bool> contains_with_lists_or_nans(table_view const& haystack,
table_view const& needles,
null_equality compare_nulls,
nan_equality compare_nans,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
rmm::device_uvector<bool> contains(table_view const& haystack,
table_view const& needles,
null_equality compare_nulls,
nan_equality compare_nans,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto map = static_map(compute_hash_table_size(haystack.num_rows()),
cuco::empty_key{lhs_index_type{std::numeric_limits<size_type>::max()}},
Expand All @@ -187,17 +184,20 @@ rmm::device_uvector<bool> contains_with_lists_or_nans(table_view const& haystack
auto const needles_has_nulls = has_nested_nulls(needles);
auto const has_any_nulls = haystack_has_nulls || needles_has_nulls;

auto const preprocessed_haystack =
cudf::experimental::row::equality::preprocessed_table::create(haystack, stream);
// Insert row indices of the haystack table as map keys.
{
auto const haystack_it = cudf::detail::make_counting_transform_iterator(
size_type{0},
[] __device__(auto const idx) { return cuco::make_pair(lhs_index_type{idx}, 0); });

auto const hasher = cudf::experimental::row::hash::row_hasher(haystack, stream);
auto const hasher = cudf::experimental::row::hash::row_hasher(preprocessed_haystack);
auto const d_hasher =
strong_index_hasher_adapter{hasher.device_hasher(nullate::DYNAMIC{has_any_nulls})};

auto const comparator = cudf::experimental::row::equality::self_comparator(haystack, stream);
auto const comparator =
cudf::experimental::row::equality::self_comparator(preprocessed_haystack);

// If the haystack table has nulls but they are compared unequal, don't insert them.
// Otherwise, it was known to cause performance issue:
Expand Down Expand Up @@ -255,17 +255,19 @@ rmm::device_uvector<bool> contains_with_lists_or_nans(table_view const& haystack
// The output vector.
auto contained = rmm::device_uvector<bool>(needles.num_rows(), stream, mr);

auto const preprocessed_needles =
cudf::experimental::row::equality::preprocessed_table::create(needles, stream);
// Check existence for each row of the needles table in the haystack table.
{
auto const needles_it = cudf::detail::make_counting_transform_iterator(
size_type{0}, [] __device__(auto const idx) { return rhs_index_type{idx}; });

auto const hasher = cudf::experimental::row::hash::row_hasher(needles, stream);
auto const hasher = cudf::experimental::row::hash::row_hasher(preprocessed_needles);
auto const d_hasher =
strong_index_hasher_adapter{hasher.device_hasher(nullate::DYNAMIC{has_any_nulls})};

auto const comparator =
cudf::experimental::row::equality::two_table_comparator(haystack, needles, stream);
auto const comparator = cudf::experimental::row::equality::two_table_comparator(
preprocessed_haystack, preprocessed_needles);

auto const check_contains = [&](auto const value_comp) {
if (cudf::detail::has_nested_columns(haystack) or cudf::detail::has_nested_columns(needles)) {
Expand Down Expand Up @@ -295,144 +297,4 @@ rmm::device_uvector<bool> contains_with_lists_or_nans(table_view const& haystack
return contained;
}

/**
* @brief Check if rows in the given `needles` table exist in the `haystack` table.
*
* This function is designed specifically to work with input tables having only columns of simple
* types, or structs columns of simple types.
*
* @param haystack The table containing the search space
* @param needles A table of rows whose existence to check in the search space
* @param compare_nulls Control whether nulls should be compared as equal or not
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned vector
* @return A vector of bools indicating if each row in `needles` has matching rows in `haystack`
*/
rmm::device_uvector<bool> contains_without_lists_or_nans(table_view const& haystack,
table_view const& needles,
null_equality compare_nulls,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto map = static_map(compute_hash_table_size(haystack.num_rows()),
cuco::empty_key{lhs_index_type{std::numeric_limits<size_type>::max()}},
cuco::empty_value{detail::JoinNoneValue},
detail::hash_table_allocator_type{default_allocator<char>{}, stream},
stream.value());

auto const haystack_has_nulls = has_nested_nulls(haystack);
auto const needles_has_nulls = has_nested_nulls(needles);
auto const has_any_nulls = haystack_has_nulls || needles_has_nulls;

// Flatten the input tables.
auto const flatten_nullability = has_any_nulls
? structs::detail::column_nullability::FORCE
: structs::detail::column_nullability::MATCH_INCOMING;
auto const haystack_flattened_tables = structs::detail::flatten_nested_columns(
haystack, {}, {}, flatten_nullability, stream, rmm::mr::get_current_device_resource());
auto const needles_flattened_tables = structs::detail::flatten_nested_columns(
needles, {}, {}, flatten_nullability, stream, rmm::mr::get_current_device_resource());
auto const haystack_flattened = haystack_flattened_tables->flattened_columns();
auto const needles_flattened = needles_flattened_tables->flattened_columns();
auto const haystack_tdv_ptr = table_device_view::create(haystack_flattened, stream);
auto const needles_tdv_ptr = table_device_view::create(needles_flattened, stream);

// Insert row indices of the haystack table as map keys.
{
auto const haystack_it = cudf::detail::make_counting_transform_iterator(
size_type{0},
[] __device__(auto const idx) { return cuco::make_pair(lhs_index_type{idx}, 0); });

auto const d_hasher = strong_index_hasher_adapter{
row_hash_legacy{cudf::nullate::DYNAMIC{has_any_nulls}, *haystack_tdv_ptr}};
auto const d_eqcomp = strong_index_comparator_adapter{
row_equality_legacy{cudf::nullate::DYNAMIC{haystack_has_nulls},
*haystack_tdv_ptr,
*haystack_tdv_ptr,
compare_nulls}};

// If the haystack table has nulls but they are compared unequal, don't insert them.
// Otherwise, it was known to cause performance issue:
// - https://github.com/rapidsai/cudf/pull/6943
// - https://github.com/rapidsai/cudf/pull/8277
if (haystack_has_nulls && compare_nulls == null_equality::UNEQUAL) {
auto const bitmask_buffer_and_ptr = build_row_bitmask(haystack, stream);
auto const row_bitmask_ptr = bitmask_buffer_and_ptr.second;

// Insert only rows that do not have any null at any level.
map.insert_if(haystack_it,
haystack_it + haystack.num_rows(),
thrust::counting_iterator<size_type>(0), // stencil
row_is_valid{row_bitmask_ptr},
d_hasher,
d_eqcomp,
stream.value());

} else { // haystack_doesn't_have_nulls || compare_nulls == null_equality::EQUAL
map.insert(
haystack_it, haystack_it + haystack.num_rows(), d_hasher, d_eqcomp, stream.value());
}
}

// The output vector.
auto contained = rmm::device_uvector<bool>(needles.num_rows(), stream, mr);

// Check existence for each row of the needles table in the haystack table.
{
auto const needles_it = cudf::detail::make_counting_transform_iterator(
size_type{0}, [] __device__(auto const idx) { return rhs_index_type{idx}; });

auto const d_hasher = strong_index_hasher_adapter{
row_hash_legacy{cudf::nullate::DYNAMIC{has_any_nulls}, *needles_tdv_ptr}};

auto const d_eqcomp = strong_index_comparator_adapter{row_equality_legacy{
cudf::nullate::DYNAMIC{has_any_nulls}, *haystack_tdv_ptr, *needles_tdv_ptr, compare_nulls}};

map.contains(needles_it,
needles_it + needles.num_rows(),
contained.begin(),
d_hasher,
d_eqcomp,
stream.value());
}

return contained;
}

} // namespace

rmm::device_uvector<bool> contains(table_view const& haystack,
table_view const& needles,
null_equality compare_nulls,
nan_equality compare_nans,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
// Checking for only one table is enough, because both tables will be checked to have the same
// shape later during row comparisons.
auto const has_lists = std::any_of(haystack.begin(), haystack.end(), [](auto const& col) {
return cudf::structs::detail::is_or_has_nested_lists(col);
});

if (has_lists || compare_nans == nan_equality::UNEQUAL) {
// We must call a separate code path that uses the new experimental row hasher and row
// comparator if:
// - The input has lists column, or
// - Floating-point NaNs are compared as unequal.
// Inputs with these conditions are supported only by this code path.
return contains_with_lists_or_nans(haystack, needles, compare_nulls, compare_nans, stream, mr);
}

// If the input tables don't have lists column and NaNs are compared equal, we rely on the classic
// code path that flattens the input tables for row comparisons. This way is known to have
// better performance.
return contains_without_lists_or_nans(haystack, needles, compare_nulls, stream, mr);

// Note: We have to keep separate code paths because unifying them will cause performance
// regression for the input having no nested lists.
//
// TODO: We should unify these code paths in the future when performance regression is no longer
// happening.
}

} // namespace cudf::detail