Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] Unable to retrieve nulls in float column when reading a cudf created parquet file #8688

Closed
galipremsagar opened this issue Jul 8, 2021 · 5 comments · Fixed by #8749
Assignees
Labels
bug Something isn't working cuIO cuIO issue

Comments

@galipremsagar
Copy link
Contributor

galipremsagar commented Jul 8, 2021

Describe the bug
This looks like a parquet writer bug. When there is a mix of np.nan & <NA> values in a float column, and that is written to parquet file, we are able to retrieve it correctly from cudf but not in pandas. But pandas is able to write this column data correctly to a parquet file and that can be read from cudf & pandas correctly.

Steps/Code to reproduce bug
Follow this guide http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports to craft a minimal bug report. This helps us reproduce the issue you're having and resolve the issue more quickly.

# Working case: Where parquet file is created by pandas
>>> import pyarrow as pa
>>> import numpy as np
>>> arrow_array = pa.array([1, np.nan, None])
>>> arrow_array
<pyarrow.lib.DoubleArray object at 0x7f630c3576a0>
[
  1,
  nan,
  null
]
>>> import pandas as pd
>>> pd_array = pd.Float64Dtype().__from_arrow__(arrow_array)
>>> pd_array
<FloatingArray>
[1.0, nan, <NA>]
Length: 3, dtype: Float64
>>> pd_series = pd.Series(pd_array)
>>> pd_series
0     1.0
1     NaN
2    <NA>
dtype: Float64
>>> pdf = pd.DataFrame({'a':pd_series})
>>> pdf
      a
0   1.0
1   NaN
2  <NA>
>>> pdf.dtypes
a    Float64
dtype: object
>>> pdf.to_parquet('pandas.parquet')
>>> pd.read_parquet('pandas.parquet')
      a
0   1.0
1   NaN
2  <NA>
>>> pd.read_parquet('pandas.parquet').dtypes
a    Float64
dtype: object
>>> cudf.read_parquet('pandas.parquet').dtypes
a    float64
dtype: object
>>> cudf.read_parquet('pandas.parquet')
      a
0   1.0
1   NaN
2  <NA>


# Bug case: Where parquet file is created by cudf.
>>> gdf = cudf.read_parquet('pandas.parquet')
>>> gdf
      a
0   1.0
1   NaN
2  <NA>
>>> gdf.dtypes
a    float64
dtype: object
>>> gdf.to_parquet('cudf.parquet')
>>> cudf.read_parquet('cudf.parquet')
      a
0   1.0
1   NaN
2  <NA>
>>> pd.read_parquet('cudf.parquet')
     a
0  1.0
1  NaN
2  NaN
>>> pd.read_parquet('cudf.parquet', use_nullable_dtypes=True)
     a
0  1.0
1  NaN
2  NaN
>>> pd.read_parquet('cudf.parquet', use_nullable_dtypes=True).dtypes
a    float64
dtype: object

Expected behavior
I'd expect the cudf written parquet file (i.e., cudf.parquet) to be able to behave similar to pandas.parquet file when read by both cudf & pandas backends.

Environment overview (please complete the following information)

  • Environment location: Bare-metal
  • Method of cuDF install: from source

Environment details
Please run and paste the output of the cudf/print_env.sh script here, to gather any other relevant environment details

Click here to see environment details
 **git***
 commit 7721819eeed68115fd4d7033cba016830b0afcd8 (HEAD -> branch-21.08)
 Author: Conor Hoekstra <[email protected]>
 Date:   Tue Jul 6 22:10:15 2021 -0400
 
 Updating Clang Version to 11.0.0 (#6695)
 
 This resolves: https://github.com/rapidsai/cudf/issues/5187
 
 PR description copied from: https://github.com/rapidsai/cuml/pull/3121
 
 Depends on: https://github.com/rapidsai/integration/pull/304
 
 This PR will upgrade the clang version required to 11.0.0 in order to enable us with running clang-tidy on .cu files, while running on cuda v11. See rapidsai/raft#88 for more details.
 
 CI will not pass as the underlying conda-env still uses 8.0.1. Once we have the rapids-build-env meta package updated, this should pass.
 
 -----
 
 ### Fixes from Clang 8.0.1 to Clang 11.0.0 (that are observed in delta)
 
 * Missing spaces
 * Incorrect alignment when ternary expression splits across multiple lines
 * Comment alignment on macros
 * Fixed where function signatures have line breaks
 * Aligning macros
 * Always left align pointer/reference
 * Don't allow single line for loops
 
 -----
 To do list:
 
 * [x] Update python file
 * [x] Update conda environment files
 * [x] Run formatter to apply all changes from upgrading
 * [x] Add changes from https://github.com/rapidsai/cudf/issues/5187
 * [x] Review list of new changes from 8.0.1 to 11; choose which to incorporate
 * [x] Get working with RAPID compose
 
 Authors:
 - Conor Hoekstra (https://github.com/codereport)
 
 Approvers:
 - AJ Schmidt (https://github.com/ajschmidt8)
 - Nghia Truong (https://github.com/ttnghia)
 - Mark Harris (https://github.com/harrism)
 - Dillon Cullinan (https://github.com/dillon-cullinan)
 
 URL: https://github.com/rapidsai/cudf/pull/6695
 **git submodules***
 
 ***OS Information***
 DISTRIB_ID=Ubuntu
 DISTRIB_RELEASE=18.04
 DISTRIB_CODENAME=bionic
 DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS"
 NAME="Ubuntu"
 VERSION="18.04.4 LTS (Bionic Beaver)"
 ID=ubuntu
 ID_LIKE=debian
 PRETTY_NAME="Ubuntu 18.04.4 LTS"
 VERSION_ID="18.04"
 HOME_URL="https://www.ubuntu.com/"
 SUPPORT_URL="https://help.ubuntu.com/"
 BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
 PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
 VERSION_CODENAME=bionic
 UBUNTU_CODENAME=bionic
 Linux dt07 4.15.0-76-generic #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
 
 ***GPU Information***
 Wed Jul  7 19:29:34 2021
 +-----------------------------------------------------------------------------+
 | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
 |-------------------------------+----------------------+----------------------+
 | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
 | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
 |                               |                      |               MIG M. |
 |===============================+======================+======================|
 |   0  Tesla T4            On   | 00000000:3B:00.0 Off |                    0 |
 | N/A   50C    P0    28W /  70W |    500MiB / 15109MiB |      0%      Default |
 |                               |                      |                  N/A |
 +-------------------------------+----------------------+----------------------+
 |   1  Tesla T4            On   | 00000000:5E:00.0 Off |                    0 |
 | N/A   37C    P8     9W /  70W |      3MiB / 15109MiB |      0%      Default |
 |                               |                      |                  N/A |
 +-------------------------------+----------------------+----------------------+
 |   2  Tesla T4            On   | 00000000:AF:00.0 Off |                    0 |
 | N/A   32C    P8    10W /  70W |      3MiB / 15109MiB |      0%      Default |
 |                               |                      |                  N/A |
 +-------------------------------+----------------------+----------------------+
 |   3  Tesla T4            On   | 00000000:D8:00.0 Off |                    0 |
 | N/A   31C    P8     9W /  70W |      3MiB / 15109MiB |      0%      Default |
 |                               |                      |                  N/A |
 +-------------------------------+----------------------+----------------------+
 
 +-----------------------------------------------------------------------------+
 | Processes:                                                                  |
 |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
 |        ID   ID                                                   Usage      |
 |=============================================================================|
 |    0   N/A  N/A     37327      C   python                            497MiB |
 +-----------------------------------------------------------------------------+
 
 ***CPU***
 Architecture:        x86_64
 CPU op-mode(s):      32-bit, 64-bit
 Byte Order:          Little Endian
 CPU(s):              64
 On-line CPU(s) list: 0-63
 Thread(s) per core:  2
 Core(s) per socket:  16
 Socket(s):           2
 NUMA node(s):        2
 Vendor ID:           GenuineIntel
 CPU family:          6
 Model:               85
 Model name:          Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
 Stepping:            4
 CPU MHz:             3255.877
 BogoMIPS:            4200.00
 Virtualization:      VT-x
 L1d cache:           32K
 L1i cache:           32K
 L2 cache:            1024K
 L3 cache:            22528K
 NUMA node0 CPU(s):   0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62
 NUMA node1 CPU(s):   1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63
 Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear flush_l1d
 
 ***CMake***
 /nvme/0/pgali/envs/cudfdev/bin/cmake
 cmake version 3.20.5
 
 CMake suite maintained and supported by Kitware (kitware.com/cmake).
 
 ***g++***
 /usr/bin/g++
 g++ (Ubuntu 9.3.0-11ubuntu0~18.04.1) 9.3.0
 Copyright (C) 2019 Free Software Foundation, Inc.
 This is free software; see the source for copying conditions.  There is NO
 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
 
 ***nvcc***
 /usr/local/cuda/bin/nvcc
 nvcc: NVIDIA (R) Cuda compiler driver
 Copyright (c) 2005-2021 NVIDIA Corporation
 Built on Sun_Feb_14_21:12:58_PST_2021
 Cuda compilation tools, release 11.2, V11.2.152
 Build cuda_11.2.r11.2/compiler.29618528_0
 
 ***Python***
 /nvme/0/pgali/envs/cudfdev/bin/python
 Python 3.8.10
 
 ***Environment Variables***
 PATH                            : /nvme/0/pgali/envs/cudfdev/bin:/usr/share/swift/usr/bin:/home/nfs/pgali/bin:/home/nfs/pgali/.local/bin:/home/nfs/pgali/anaconda3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/usr/lib/jvm/default-java/bin:/usr/share/sbt-launcher-packaging/bin/sbt-launch.jar/bin:/usr/lib/spark/bin:/usr/lib/spark/sbin:/usr/local/cuda/bin:/nvme/0/pgali/envs/cudfdev/bin
 LD_LIBRARY_PATH                 : /usr/local/cuda/lib64::/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64
 NUMBAPRO_NVVM                   :
 NUMBAPRO_LIBDEVICE              :
 CONDA_PREFIX                    : /nvme/0/pgali/envs/cudfdev
 PYTHON_PATH                     :
 
 ***conda packages***
 /home/nfs/pgali/anaconda3/condabin/conda
 # packages in environment at /nvme/0/pgali/envs/cudfdev:
 #
 # Name                    Version                   Build  Channel
 _libgcc_mutex             0.1                 conda_forge    conda-forge
 _openmp_mutex             4.5                      1_llvm    conda-forge
 abseil-cpp                20210324.2           h9c3ff4c_0    conda-forge
 alabaster                 0.7.12                     py_0    conda-forge
 appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge
 argon2-cffi               20.1.0           py38h497a2fe_2    conda-forge
 arrow-cpp                 4.0.1           py38hf0991f3_4_cuda    conda-forge
 arrow-cpp-proc            3.0.0                      cuda    conda-forge
 async_generator           1.10                       py_0    conda-forge
 attrs                     21.2.0             pyhd8ed1ab_0    conda-forge
 aws-c-cal                 0.5.11               h95a6274_0    conda-forge
 aws-c-common              0.6.2                h7f98852_0    conda-forge
 aws-c-event-stream        0.2.7               h3541f99_13    conda-forge
 aws-c-io                  0.10.5               hfb6a706_0    conda-forge
 aws-checksums             0.1.11               ha31a3da_7    conda-forge
 aws-sdk-cpp               1.8.186              hb4091e7_3    conda-forge
 babel                     2.9.1              pyh44b312d_0    conda-forge
 backcall                  0.2.0              pyh9f0ad1d_0    conda-forge
 backports                 1.0                        py_2    conda-forge
 backports.functools_lru_cache 1.6.4              pyhd8ed1ab_0    conda-forge
 binutils_impl_linux-64    2.36.1               h193b22a_1    conda-forge
 black                     19.10b0                    py_4    conda-forge
 bleach                    3.3.0              pyh44b312d_0    conda-forge
 bokeh                     2.3.2            py38h578d9bd_0    conda-forge
 brotlipy                  0.7.0           py38h497a2fe_1001    conda-forge
 bzip2                     1.0.8                h7f98852_4    conda-forge
 c-ares                    1.17.1               h7f98852_1    conda-forge
 ca-certificates           2021.5.30            ha878542_0    conda-forge
 cachetools                4.2.2              pyhd8ed1ab_0    conda-forge
 certifi                   2021.5.30        py38h578d9bd_0    conda-forge
 cffi                      1.14.5           py38ha65f79e_0    conda-forge
 cfgv                      3.3.0              pyhd8ed1ab_0    conda-forge
 chardet                   4.0.0            py38h578d9bd_1    conda-forge
 clang                     11.0.0               ha770c72_2    conda-forge
 clang-11                  11.0.0          default_ha5c780c_2    conda-forge
 clang-tools               11.0.0          default_ha5c780c_2    conda-forge
 clangxx                   11.0.0          default_ha5c780c_2    conda-forge
 click                     8.0.1            py38h578d9bd_0    conda-forge
 cloudpickle               1.6.0                      py_0    conda-forge
 cmake                     3.20.5               h8897547_0    conda-forge
 cmake_setuptools          0.1.3                      py_0    rapidsai
 colorama                  0.4.4              pyh9f0ad1d_0    conda-forge
 commonmark                0.9.1                      py_0    conda-forge
 cryptography              3.4.7            py38ha5dfef3_0    conda-forge
 cudatoolkit               11.2.72              h2bc3f7f_0    nvidia
 cudf                      21.8.0a0+249.g7721819eee.dirty          pypi_0    pypi
 cupy                      9.2.0            py38ha69542f_0    conda-forge
 cython                    0.29.23          py38h709712a_1    conda-forge
 cytoolz                   0.11.0           py38h497a2fe_3    conda-forge
 dask                      2021.6.2+17.gfcbb4ad7          pypi_0    pypi
 dask-cudf                 21.8.0a0+249.g7721819eee.dirty          pypi_0    pypi
 dataclasses               0.8                pyhc8e2a94_1    conda-forge
 debugpy                   1.3.0            py38h709712a_0    conda-forge
 decorator                 5.0.9              pyhd8ed1ab_0    conda-forge
 defusedxml                0.7.1              pyhd8ed1ab_0    conda-forge
 distlib                   0.3.2              pyhd8ed1ab_0    conda-forge
 distributed               2021.6.2+35.g88b99ae2          pypi_0    pypi
 dlpack                    0.5                  h9c3ff4c_0    conda-forge
 docutils                  0.16             py38h578d9bd_3    conda-forge
 double-conversion         3.1.5                h9c3ff4c_2    conda-forge
 editdistance-s            1.0.0            py38h1fd1430_1    conda-forge
 entrypoints               0.3             pyhd8ed1ab_1003    conda-forge
 execnet                   1.9.0              pyhd8ed1ab_0    conda-forge
 expat                     2.4.1                h9c3ff4c_0    conda-forge
 fastavro                  1.4.2            py38h497a2fe_0    conda-forge
 fastrlock                 0.6              py38h709712a_1    conda-forge
 filelock                  3.0.12             pyh9f0ad1d_0    conda-forge
 flake8                    3.8.3                      py_1    conda-forge
 flatbuffers               2.0.0                h9c3ff4c_0    conda-forge
 freetype                  2.10.4               h0708190_1    conda-forge
 fsspec                    2021.6.1           pyhd8ed1ab_0    conda-forge
 future                    0.18.2           py38h578d9bd_3    conda-forge
 gcc_impl_linux-64         9.3.0               h70c0ae5_19    conda-forge
 gflags                    2.2.2             he1b5a44_1004    conda-forge
 glog                      0.5.0                h48cff8f_0    conda-forge
 gmp                       6.2.1                h58526e2_0    conda-forge
 grpc-cpp                  1.38.1               h36ce80c_0    conda-forge
 heapdict                  1.0.1                      py_0    conda-forge
 huggingface_hub           0.0.13             pyhd8ed1ab_0    conda-forge
 hypothesis                6.14.1             pyhd8ed1ab_0    conda-forge
 identify                  2.2.10             pyhd8ed1ab_0    conda-forge
 idna                      2.10               pyh9f0ad1d_0    conda-forge
 imagesize                 1.2.0                      py_0    conda-forge
 importlib-metadata        4.6.1            py38h578d9bd_0    conda-forge
 importlib_metadata        4.6.1                hd8ed1ab_0    conda-forge
 iniconfig                 1.1.1              pyh9f0ad1d_0    conda-forge
 ipykernel                 6.0.1            py38hd0cf306_0    conda-forge
 ipython                   7.25.0           py38hd0cf306_1    conda-forge
 ipython_genutils          0.2.0                      py_1    conda-forge
 isort                     5.0.7            py38h32f6830_0    conda-forge
 jbig                      2.1               h7f98852_2003    conda-forge
 jedi                      0.18.0           py38h578d9bd_2    conda-forge
 jinja2                    3.0.1              pyhd8ed1ab_0    conda-forge
 joblib                    1.0.1              pyhd8ed1ab_0    conda-forge
 jpeg                      9d                   h36c2ea0_0    conda-forge
 jsonschema                3.2.0              pyhd8ed1ab_3    conda-forge
 jupyter_client            6.1.12             pyhd8ed1ab_0    conda-forge
 jupyter_core              4.7.1            py38h578d9bd_0    conda-forge
 jupyterlab_pygments       0.1.2              pyh9f0ad1d_0    conda-forge
 kernel-headers_linux-64   2.6.32              h77966d4_13    conda-forge
 krb5                      1.19.1               hcc1bbae_0    conda-forge
 lcms2                     2.12                 hddcbb42_0    conda-forge
 ld_impl_linux-64          2.36.1               hea4e1c9_1    conda-forge
 lerc                      2.2.1                h9c3ff4c_0    conda-forge
 libblas                   3.9.0                     8_mkl    conda-forge
 libbrotlicommon           1.0.9                h7f98852_5    conda-forge
 libbrotlidec              1.0.9                h7f98852_5    conda-forge
 libbrotlienc              1.0.9                h7f98852_5    conda-forge
 libcblas                  3.9.0                     8_mkl    conda-forge
 libclang-cpp11            11.0.0          default_ha5c780c_2    conda-forge
 libcurl                   7.77.0               h2574ce0_0    conda-forge
 libdeflate                1.7                  h7f98852_5    conda-forge
 libedit                   3.1.20191231         he28a2e2_2    conda-forge
 libev                     4.33                 h516909a_1    conda-forge
 libevent                  2.1.10               hcdb4288_3    conda-forge
 libffi                    3.3                  h58526e2_2    conda-forge
 libgcc-devel_linux-64     9.3.0               h7864c58_19    conda-forge
 libgcc-ng                 9.3.0               h2828fa1_19    conda-forge
 libgomp                   9.3.0               h2828fa1_19    conda-forge
 liblapack                 3.9.0                     8_mkl    conda-forge
 libllvm10                 10.0.1               he513fc3_3    conda-forge
 libllvm11                 11.0.1               hf817b99_0    conda-forge
 libnghttp2                1.43.0               h812cca2_0    conda-forge
 libpng                    1.6.37               h21135ba_2    conda-forge
 libprotobuf               3.16.0               h780b84a_0    conda-forge
 librmm                    21.08.00a210707 cuda11.2_geb2b991_34    rapidsai-nightly
 libsodium                 1.0.18               h36c2ea0_1    conda-forge
 libssh2                   1.9.0                ha56f1ee_6    conda-forge
 libstdcxx-ng              9.3.0               h6de172a_19    conda-forge
 libthrift                 0.14.2               he6d91bd_1    conda-forge
 libtiff                   4.3.0                hf544144_1    conda-forge
 libutf8proc               2.6.1                h7f98852_0    conda-forge
 libuv                     1.41.0               h7f98852_0    conda-forge
 libwebp-base              1.2.0                h7f98852_2    conda-forge
 llvm-openmp               11.1.0               h4bd325d_1    conda-forge
 llvmlite                  0.36.0           py38h4630a5e_0    conda-forge
 locket                    0.2.0                      py_2    conda-forge
 lz4-c                     1.9.3                h9c3ff4c_0    conda-forge
 markdown                  3.3.4              pyhd8ed1ab_0    conda-forge
 markupsafe                2.0.1            py38h497a2fe_0    conda-forge
 matplotlib-inline         0.1.2              pyhd8ed1ab_2    conda-forge
 mccabe                    0.6.1                      py_1    conda-forge
 mimesis                   4.0.0              pyh9f0ad1d_0    conda-forge
 mistune                   0.8.4           py38h497a2fe_1004    conda-forge
 mkl                       2020.4             h726a3e6_304    conda-forge
 more-itertools            8.8.0              pyhd8ed1ab_0    conda-forge
 msgpack-python            1.0.2            py38h1fd1430_1    conda-forge
 mypy                      0.782                      py_0    conda-forge
 mypy_extensions           0.4.3            py38h578d9bd_3    conda-forge
 nbclient                  0.5.3              pyhd8ed1ab_0    conda-forge
 nbconvert                 6.1.0            py38h578d9bd_0    conda-forge
 nbformat                  5.1.3              pyhd8ed1ab_0    conda-forge
 nbsphinx                  0.8.6              pyhd8ed1ab_1    conda-forge
 ncurses                   6.2                  h58526e2_4    conda-forge
 nest-asyncio              1.5.1              pyhd8ed1ab_0    conda-forge
 ninja                     1.10.2               h4bd325d_0    conda-forge
 nodeenv                   1.6.0              pyhd8ed1ab_0    conda-forge
 notebook                  6.4.0              pyha770c72_0    conda-forge
 numba                     0.53.1           py38h8b71fd7_1    conda-forge
 numpy                     1.21.0           py38h9894fe3_0    conda-forge
 numpydoc                  1.1.0                      py_1    conda-forge
 nvtx                      0.2.3            py38h497a2fe_0    conda-forge
 olefile                   0.46               pyh9f0ad1d_1    conda-forge
 openjpeg                  2.4.0                hb52868f_1    conda-forge
 openssl                   1.1.1k               h7f98852_0    conda-forge
 orc                       1.6.9                h58a87f1_0    conda-forge
 packaging                 21.0               pyhd8ed1ab_0    conda-forge
 pandas                    1.2.5            py38h1abd341_0    conda-forge
 pandoc                    1.19.2                        0    conda-forge
 pandocfilters             1.4.2                      py_1    conda-forge
 parquet-cpp               1.5.1                         2    conda-forge
 parso                     0.8.2              pyhd8ed1ab_0    conda-forge
 partd                     1.2.0              pyhd8ed1ab_0    conda-forge
 pathspec                  0.8.1              pyhd3deb0d_0    conda-forge
 pexpect                   4.8.0              pyh9f0ad1d_2    conda-forge
 pickleshare               0.7.5                   py_1003    conda-forge
 pillow                    8.3.0            py38h8e6f84c_0    conda-forge
 pip                       21.1.3             pyhd8ed1ab_0    conda-forge
 pluggy                    0.13.1           py38h578d9bd_4    conda-forge
 pre-commit                2.13.0           py38h578d9bd_0    conda-forge
 pre_commit                2.13.0               hd8ed1ab_0    conda-forge
 prometheus_client         0.11.0             pyhd8ed1ab_0    conda-forge
 prompt-toolkit            3.0.19             pyha770c72_0    conda-forge
 protobuf                  3.16.0           py38h709712a_0    conda-forge
 psutil                    5.8.0            py38h497a2fe_1    conda-forge
 ptyprocess                0.7.0              pyhd3deb0d_0    conda-forge
 py                        1.10.0             pyhd3deb0d_0    conda-forge
 py-cpuinfo                8.0.0              pyhd8ed1ab_0    conda-forge
 pyarrow                   4.0.1           py38hb53058b_4_cuda    conda-forge
 pycodestyle               2.6.0              pyh9f0ad1d_0    conda-forge
 pycparser                 2.20               pyh9f0ad1d_2    conda-forge
 pyflakes                  2.2.0              pyh9f0ad1d_0    conda-forge
 pygments                  2.9.0              pyhd8ed1ab_0    conda-forge
 pyopenssl                 20.0.1             pyhd8ed1ab_0    conda-forge
 pyorc                     0.4.0                    pypi_0    pypi
 pyparsing                 2.4.7              pyh9f0ad1d_0    conda-forge
 pyrsistent                0.17.3           py38h497a2fe_2    conda-forge
 pysocks                   1.7.1            py38h578d9bd_3    conda-forge
 pytest                    6.2.4            py38h578d9bd_0    conda-forge
 pytest-benchmark          3.4.1              pyhd8ed1ab_0    conda-forge
 pytest-forked             1.3.0              pyhd3deb0d_0    conda-forge
 pytest-xdist              2.3.0              pyhd8ed1ab_0    conda-forge
 python                    3.8.10          h49503c6_1_cpython    conda-forge
 python-dateutil           2.8.1                      py_0    conda-forge
 python_abi                3.8                      2_cp38    conda-forge
 pytorch                   1.7.1           cpu_py38h36eccb8_2    conda-forge
 pytz                      2021.1             pyhd8ed1ab_0    conda-forge
 pyyaml                    5.4.1            py38h497a2fe_0    conda-forge
 pyzmq                     22.1.0           py38h2035c66_0    conda-forge
 rapidjson                 1.1.0             he1b5a44_1002    conda-forge
 re2                       2021.06.01           h9c3ff4c_0    conda-forge
 readline                  8.1                  h46c0cb4_0    conda-forge
 recommonmark              0.7.1              pyhd8ed1ab_0    conda-forge
 regex                     2021.7.6         py38h497a2fe_0    conda-forge
 requests                  2.25.1             pyhd3deb0d_0    conda-forge
 rhash                     1.4.1                h7f98852_0    conda-forge
 rmm                       21.08.00a210707 cuda_11.2_py38_geb2b991_34    rapidsai-nightly
 s2n                       1.0.10               h9b69904_0    conda-forge
 sacremoses                0.0.43             pyh9f0ad1d_0    conda-forge
 send2trash                1.7.1              pyhd8ed1ab_0    conda-forge
 setuptools                49.6.0           py38h578d9bd_3    conda-forge
 six                       1.16.0             pyh6c4a22f_0    conda-forge
 snappy                    1.1.8                he1b5a44_3    conda-forge
 snowballstemmer           2.1.0              pyhd8ed1ab_0    conda-forge
 sortedcontainers          2.4.0              pyhd8ed1ab_0    conda-forge
 spdlog                    1.8.5                h4bd325d_0    conda-forge
 sphinx                    4.0.3              pyh6c4a22f_0    conda-forge
 sphinx-copybutton         0.4.0              pyhd8ed1ab_0    conda-forge
 sphinx-markdown-tables    0.0.15             pyhd3deb0d_0    conda-forge
 sphinx_rtd_theme          0.5.2              pyhd8ed1ab_1    conda-forge
 sphinxcontrib-applehelp   1.0.2                      py_0    conda-forge
 sphinxcontrib-devhelp     1.0.2                      py_0    conda-forge
 sphinxcontrib-htmlhelp    2.0.0              pyhd8ed1ab_0    conda-forge
 sphinxcontrib-jsmath      1.0.1                      py_0    conda-forge
 sphinxcontrib-qthelp      1.0.3                      py_0    conda-forge
 sphinxcontrib-serializinghtml 1.1.5              pyhd8ed1ab_0    conda-forge
 sphinxcontrib-websupport  1.2.4              pyh9f0ad1d_0    conda-forge
 sqlite                    3.36.0               h9cd32fc_0    conda-forge
 streamz                   0.6.2              pyh44b312d_0    conda-forge
 sysroot_linux-64          2.12                h77966d4_13    conda-forge
 tblib                     1.7.0              pyhd8ed1ab_0    conda-forge
 terminado                 0.10.1           py38h578d9bd_0    conda-forge
 testpath                  0.5.0              pyhd8ed1ab_0    conda-forge
 tk                        8.6.10               h21135ba_1    conda-forge
 tokenizers                0.10.1           py38hb63a372_0    conda-forge
 toml                      0.10.2             pyhd8ed1ab_0    conda-forge
 toolz                     0.11.1                     py_0    conda-forge
 tornado                   6.1              py38h497a2fe_1    conda-forge
 tqdm                      4.61.2             pyhd8ed1ab_1    conda-forge
 traitlets                 5.0.5                      py_0    conda-forge
 transformers              4.8.2              pyhd8ed1ab_0    conda-forge
 typed-ast                 1.4.3            py38h497a2fe_0    conda-forge
 typing-extensions         3.10.0.0             hd8ed1ab_0    conda-forge
 typing_extensions         3.10.0.0           pyha770c72_0    conda-forge
 urllib3                   1.26.6             pyhd8ed1ab_0    conda-forge
 virtualenv                20.4.7           py38h578d9bd_0    conda-forge
 wcwidth                   0.2.5              pyh9f0ad1d_2    conda-forge
 webencodings              0.5.1                      py_1    conda-forge
 wheel                     0.36.2             pyhd3deb0d_0    conda-forge
 xz                        5.2.5                h516909a_1    conda-forge
 yaml                      0.2.5                h516909a_0    conda-forge
 zeromq                    4.3.4                h9c3ff4c_0    conda-forge
 zict                      2.0.0                      py_0    conda-forge
 zipp                      3.5.0              pyhd8ed1ab_0    conda-forge
 zlib                      1.2.11            h516909a_1010    conda-forge
 zstd                      1.5.0                ha95c52a_0    conda-forge

Additional context
Add any other context about the problem here.

@galipremsagar galipremsagar added bug Something isn't working Needs Triage Need team to review and classify cuIO cuIO issue labels Jul 8, 2021
@galipremsagar galipremsagar changed the title [BUG] Unable to retrieve nulls when reading a cudf created parquet file [BUG] Unable to retrieve nulls in float column when reading a cudf created parquet file Jul 8, 2021
@devavret
Copy link
Contributor

devavret commented Jul 8, 2021

Here are my observations:
The only difference between the extra metadata of the files written by cudf and pandas is that the one written by cudf has
"numpy_type": "float64" while the one written by pandas has
"numpy_type": "Float64"

When I added a correction code to utils.pyx:generate_pandas_metadata:

if col_meta["numpy_type"] in ("float64"):
   col_meta["numpy_type"] = "Float64"

it fixed this issue.

The culprit is pa.pandas_compat.construct_metadata

Another area in cudf that uses this pyarrow API also shows the same behaviour:

In [37]: gdf.to_arrow().to_pandas()
Out[37]: 
     a
0  1.0
1  NaN
2  NaN

@devavret
Copy link
Contributor

devavret commented Jul 9, 2021

The difference is in our dtypes. Pandas uses its own Float64Dtype for its numerical columns

In [5]: pdf.a.dtype
Out[5]: Float64Dtype()

In [6]: str(pdf.a.dtype)
Out[6]: 'Float64'

In [12]: type(pdf.a.dtype)
Out[12]: pandas.core.arrays.floating.Float64Dtype

that wraps an np dtype

@register_extension_dtype
class Float64Dtype(FloatingDtype):
    type = np.float64
    name = "Float64"
    __doc__ = _dtype_docstring.format(dtype="float64")

We directly use the np dtype for our numerical columns

In [9]: gdf.a.dtype
Out[9]: dtype('float64')

In [10]: str(gdf.a.dtype)
Out[10]: 'float64'

In [13]: type(gdf.a.dtype)
Out[13]: numpy.dtype

When generating pandas metadata, pyarrow uses str(column.dtype) to generate the aforementioned field.

@devavret
Copy link
Contributor

devavret commented Jul 9, 2021

Pandas used to also use numpy dtype for it's columns until v0.24 when they added null support. Here's the docs from pandas where it explains that the new type used for nullable columns is an "Extension type". Notably the difference between this and the underlying numpy type:

Or the string alias "Int64" (note the capital "I", to differentiate from NumPy’s 'int64' dtype

@galipremsagar
Copy link
Contributor Author

Here are my observations:
The only difference between the extra metadata of the files written by cudf and pandas is that the one written by cudf has
"numpy_type": "float64" while the one written by pandas has
"numpy_type": "Float64"

When I added a correction code to utils.pyx:generate_pandas_metadata:

if col_meta["numpy_type"] in ("float64"):
   col_meta["numpy_type"] = "Float64"

it fixed this issue.

This looks like a reasonable fix to me, I don't see any downsides to doing this. Are there any that I'm missing?

@devavret
Copy link
Contributor

devavret commented Jul 9, 2021

This looks like a reasonable fix to me, I don't see any downsides to doing this. Are there any that I'm missing?

It fixes the symptom but not the issue. I filed #8707 to explain why we should use a better dtype than np.float64 for a nullable float column.

rapids-bot bot pushed a commit that referenced this issue Jul 16, 2021
Prevents nullable columns to be read as float columns with NaNs when reading with pandas.

Fixes #8688

Authors:
  - Devavret Makkar (https://github.com/devavret)
  - GALI PREM SAGAR (https://github.com/galipremsagar)

Approvers:
  - GALI PREM SAGAR (https://github.com/galipremsagar)

URL: #8749
@bdice bdice removed the Needs Triage Need team to review and classify label Mar 4, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working cuIO cuIO issue
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants