Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] std incorrectly calculated in dask describe calls for specific dataframe values #7402

Closed
wphicks opened this issue Feb 17, 2021 · 4 comments · Fixed by #7453
Closed
Labels
bug Something isn't working Python Affects Python cuDF API.

Comments

@wphicks
Copy link

wphicks commented Feb 17, 2021

Describe the bug
When a dataframe is filled with specific values, the reported std output by describe is NaN

Steps/Code to reproduce bug

import numpy as np
from dask import dataframe as dd

import cudf
import dask_cudf as dgd

df = cudf.DataFrame({
    'x': np.full((20,), 22642751, dtype=np.float),
    'y': np.full((20,), 22642751, dtype=np.float),
})
pdf = df.to_pandas()
ddf = dgd.from_cudf(df, npartitions=4)
pddf = dd.from_cudf(pdf, npartitions=4)
dd.assert_eq(ddf.describe(), pddf.describe(), check_less_precise=3)

Expected behavior
The reported std should be 0.0, as we see from the Pandas output instead of NaN

Environment overview (please complete the following information)
source build of branch-0.18

Environment details

Click here to see environment details
 **git***
 commit 53ed28e91c71bd5f7413949c8cdaf0e3bbd0b5b8 (HEAD -> branch-0.18, tag: branch-0.18-latest, upstream/branch-0.18)
 Author: Mike Wendt <[email protected]>
 Date:   Tue Feb 16 21:44:16 2021 -0500
 
 Update stale GHA with exemptions & new labels (#7395)
 
 Follows #7388
 
 Updates the stale GHA with the following changes:
 
 - [x] Uses `inactive-30d` and `inactive-90d` labels instead of `stale` and `rotten`
 - [x] Updates comments to reflect changes in labels
 - [x] Exempts the following labels from being marked `inactive-30d` or `inactive-90d`
 - `0 - Blocked`
 - `0 - Backlog`
 - `good first issue`
 
 Authors:
 - Mike Wendt (@mike-wendt)
 
 Approvers:
 - Keith Kraus (@kkraus14)
 - Ray Douglass (@raydouglass)
 
 URL: https://github.com/rapidsai/cudf/pull/7395
 **git submodules***
 
 ***OS Information***
 DISTRIB_ID=Ubuntu
 DISTRIB_RELEASE=20.04
 DISTRIB_CODENAME=focal
 DISTRIB_DESCRIPTION="Ubuntu 20.04.1 LTS"
 NAME="Ubuntu"
 VERSION="20.04.1 LTS (Focal Fossa)"
 ID=ubuntu
 ID_LIKE=debian
 PRETTY_NAME="Ubuntu 20.04.1 LTS"
 VERSION_ID="20.04"
 HOME_URL="https://www.ubuntu.com/"
 SUPPORT_URL="https://help.ubuntu.com/"
 BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
 PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
 VERSION_CODENAME=focal
 UBUNTU_CODENAME=focal
 Linux whicks-dt 5.8.0-36-generic #40~20.04.1-Ubuntu SMP Wed Jan 6 10:15:55 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux
 
 ***GPU Information***
 Wed Feb 17 12:45:24 2021
 +-----------------------------------------------------------------------------+
 | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
 |-------------------------------+----------------------+----------------------+
 | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
 | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
 |                               |                      |               MIG M. |
 |===============================+======================+======================|
 |   0  Quadro RTX 8000     Off  | 00000000:15:00.0 Off |                  Off |
 | 33%   32C    P8    32W / 260W |    751MiB / 48601MiB |      0%      Default |
 |                               |                      |                  N/A |
 +-------------------------------+----------------------+----------------------+
 |   1  Quadro RTX 8000     Off  | 00000000:2D:00.0 Off |                  Off |
 | 33%   38C    P8    22W / 260W |     18MiB / 48593MiB |      0%      Default |
 |                               |                      |                  N/A |
 +-------------------------------+----------------------+----------------------+
 
 +-----------------------------------------------------------------------------+
 | Processes:                                                                  |
 |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
 |        ID   ID                                                   Usage      |
 |=============================================================================|
 |    0   N/A  N/A      1443      G   /usr/lib/xorg/Xorg                  4MiB |
 |    0   N/A  N/A    210588      C   .../envs/cudf_dev/bin/python      743MiB |
 |    1   N/A  N/A      1443      G   /usr/lib/xorg/Xorg                 10MiB |
 |    1   N/A  N/A      1722      G   /usr/bin/gnome-shell                4MiB |
 +-----------------------------------------------------------------------------+
 
 ***CPU***
 Architecture:                    x86_64
 CPU op-mode(s):                  32-bit, 64-bit
 Byte Order:                      Little Endian
 Address sizes:                   46 bits physical, 48 bits virtual
 CPU(s):                          12
 On-line CPU(s) list:             0-11
 Thread(s) per core:              2
 Core(s) per socket:              6
 Socket(s):                       1
 NUMA node(s):                    1
 Vendor ID:                       GenuineIntel
 CPU family:                      6
 Model:                           85
 Model name:                      Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
 Stepping:                        4
 CPU MHz:                         1387.290
 CPU max MHz:                     3700.0000
 CPU min MHz:                     1200.0000
 BogoMIPS:                        6800.00
 Virtualization:                  VT-x
 L1d cache:                       192 KiB
 L1i cache:                       192 KiB
 L2 cache:                        6 MiB
 L3 cache:                        19.3 MiB
 NUMA node0 CPU(s):               0-11
 Vulnerability Itlb multihit:     KVM: Mitigation: VMX disabled
 Vulnerability L1tf:              Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
 Vulnerability Mds:               Mitigation; Clear CPU buffers; SMT vulnerable
 Vulnerability Meltdown:          Mitigation; PTI
 Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
 Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 Vulnerability Spectre v2:        Mitigation; Full generic retpoline, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling
 Vulnerability Srbds:             Not affected
 Vulnerability Tsx async abort:   Mitigation; Clear CPU buffers; SMT vulnerable
 Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear flush_l1d
 
 ***CMake***
 /home/whicks/anaconda3/envs/cudf_dev/bin/cmake
 cmake version 3.18.5
 
 CMake suite maintained and supported by Kitware (kitware.com/cmake).
 
 ***g++***
 /usr/bin/g++
 g++ (Ubuntu 8.4.0-3ubuntu2) 8.4.0
 Copyright (C) 2018 Free Software Foundation, Inc.
 This is free software; see the source for copying conditions.  There is NO
 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
 
 ***nvcc***
 /usr/local/cuda-11.0/bin/nvcc
 nvcc: NVIDIA (R) Cuda compiler driver
 Copyright (c) 2005-2020 NVIDIA Corporation
 Built on Wed_Jul_22_19:09:09_PDT_2020
 Cuda compilation tools, release 11.0, V11.0.221
 Build cuda_11.0_bu.TC445_37.28845127_0
 
 ***Python***
 /home/whicks/anaconda3/envs/cudf_dev/bin/python
 Python 3.7.9
 
 ***Environment Variables***
 PATH                            : /usr/local/cuda-11.0/bin:/home/whicks/.yarn/bin:/home/whicks/.config/yarn/global/node_modules/.bin:/home/whicks/scripts:/home/whicks/bin:/home/whicks/rc/git_aliases:/usr/local/cuda/bin:/home/whicks/.yarn/bin:/home/whicks/.config/yarn/global/node_modules/.bin:/home/whicks/.nvm/versions/node/v12.18.4/bin:/home/whicks/scripts:/home/whicks/bin:/home/whicks/rc/git_aliases:/home/whicks/anaconda3/envs/cudf_dev/bin:/home/whicks/anaconda3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/whicks/.fzf/bin
 LD_LIBRARY_PATH                 : /usr/local/cuda-11.0/lib64:/usr/local/cuda/lib64:
 NUMBAPRO_NVVM                   :
 NUMBAPRO_LIBDEVICE              :
 CONDA_PREFIX                    : /home/whicks/anaconda3/envs/cudf_dev
 PYTHON_PATH                     :
 
 ***conda packages***
 /home/whicks/anaconda3/condabin/conda
 # packages in environment at /home/whicks/anaconda3/envs/cudf_dev:
 #
 # Name                    Version                   Build  Channel
 _libgcc_mutex             0.1                 conda_forge    conda-forge
 _openmp_mutex             4.5                       1_gnu    conda-forge
 abseil-cpp                20200923.3           h9c3ff4c_0    conda-forge
 alabaster                 0.7.12                     py_0    conda-forge
 apipkg                    1.5                        py_0    conda-forge
 appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge
 argon2-cffi               20.1.0           py37h5e8e339_2    conda-forge
 arrow-cpp                 1.0.1           py37h0d899e7_30_cuda    conda-forge
 arrow-cpp-proc            3.0.0                      cuda    conda-forge
 async_generator           1.10                       py_0    conda-forge
 attrs                     20.3.0             pyhd3deb0d_0    conda-forge
 aws-c-cal                 0.4.5                h2ff795d_6    conda-forge
 aws-c-common              0.4.67               h7f98852_0    conda-forge
 aws-c-event-stream        0.2.6                h4285e0c_4    conda-forge
 aws-c-io                  0.8.3                h3b39b8c_1    conda-forge
 aws-checksums             0.1.11               h3b39b8c_1    conda-forge
 aws-sdk-cpp               1.8.138              h9e0957a_1    conda-forge
 babel                     2.9.0              pyhd3deb0d_0    conda-forge
 backcall                  0.2.0              pyh9f0ad1d_0    conda-forge
 backports                 1.0                        py_2    conda-forge
 backports.functools_lru_cache 1.6.1                      py_0    conda-forge
 black                     19.10b0                    py_4    conda-forge
 bleach                    3.3.0              pyh44b312d_0    conda-forge
 bokeh                     2.2.3            py37h89c1867_0    conda-forge
 boost-cpp                 1.75.0               hc6e9bd1_0    conda-forge
 brotli                    1.0.9                h9c3ff4c_4    conda-forge
 brotlipy                  0.7.0           py37h5e8e339_1001    conda-forge
 bzip2                     1.0.8                h7f98852_4    conda-forge
 c-ares                    1.17.1               h36c2ea0_0    conda-forge
 ca-certificates           2020.12.5            ha878542_0    conda-forge
 certifi                   2020.12.5        py37h89c1867_1    conda-forge
 cffi                      1.14.5           py37hc58025e_0    conda-forge
 cfgv                      3.2.0                      py_0    conda-forge
 chardet                   4.0.0            py37h89c1867_1    conda-forge
 clang                     8.0.1                hc9558a2_2    conda-forge
 clang-tools               8.0.1                hc9558a2_2    conda-forge
 clangxx                   8.0.1                         2    conda-forge
 click                     7.1.2              pyh9f0ad1d_0    conda-forge
 cloudpickle               1.6.0                      py_0    conda-forge
 cmake                     3.18.5               h1f3970d_0    rapidsai-nightly
 cmake_setuptools          0.1.3                      py_0    rapidsai
 colorama                  0.4.4              pyh9f0ad1d_0    conda-forge
 commonmark                0.9.1                      py_0    conda-forge
 cryptography              3.4.4            py37hf1a17b8_0    conda-forge
 cudatoolkit               11.0.221             h6bb024c_0    nvidia
 cudf                      0.18.0a0+253.g53ed28e91c.dirty          pypi_0    pypi
 cudnn                     8.0.0                cuda11.0_0    nvidia
 cupy                      8.0.0            py37h0ce7dbb_0    rapidsai
 cython                    0.29.21          py37hcd2ae1e_2    conda-forge
 cytoolz                   0.11.0           py37h5e8e339_3    conda-forge
 dask                      2021.2.0+15.gf8d5f607          pypi_0    pypi
 dask-cudf                 branch-0.18-latest-0.g53ed28e91c.dirty          pypi_0    pypi
 decorator                 4.4.2                      py_0    conda-forge
 defusedxml                0.6.0                      py_0    conda-forge
 distlib                   0.3.1              pyh9f0ad1d_0    conda-forge
 distributed               2021.2.0+7.g383ea032          pypi_0    pypi
 dlpack                    0.3                  he1b5a44_1    conda-forge
 docutils                  0.16             py37h89c1867_3    conda-forge
 double-conversion         3.1.5                he1b5a44_2    conda-forge
 editdistance              0.5.3            py37hcd2ae1e_3    conda-forge
 entrypoints               0.3             pyhd8ed1ab_1003    conda-forge
 execnet                   1.8.0              pyh44b312d_0    conda-forge
 expat                     2.2.10               h9c3ff4c_0    conda-forge
 fastavro                  1.3.2            py37h5e8e339_0    conda-forge
 fastrlock                 0.5              py37hcd2ae1e_2    conda-forge
 filelock                  3.0.12             pyh9f0ad1d_0    conda-forge
 flake8                    3.8.3                      py_1    conda-forge
 flatbuffers               1.12.0               h58526e2_0    conda-forge
 freetype                  2.10.4               h0708190_1    conda-forge
 fsspec                    0.8.5              pyhd8ed1ab_0    conda-forge
 future                    0.18.2           py37h89c1867_3    conda-forge
 gflags                    2.2.2             he1b5a44_1004    conda-forge
 glog                      0.4.0                h49b9bf7_3    conda-forge
 gmp                       6.2.1                h58526e2_0    conda-forge
 grpc-cpp                  1.35.0               h146f9af_0    conda-forge
 heapdict                  1.0.1                      py_0    conda-forge
 hypothesis                6.2.0              pyhd8ed1ab_0    conda-forge
 icu                       68.1                 h58526e2_0    conda-forge
 identify                  1.5.13             pyh44b312d_0    conda-forge
 idna                      2.10               pyh9f0ad1d_0    conda-forge
 imagesize                 1.2.0                      py_0    conda-forge
 importlib-metadata        3.4.0            py37h89c1867_0    conda-forge
 importlib_metadata        3.4.0                hd8ed1ab_0    conda-forge
 iniconfig                 1.1.1              pyh9f0ad1d_0    conda-forge
 ipykernel                 5.4.2            py37h888b3d9_0    conda-forge
 ipython                   7.20.0           py37h888b3d9_2    conda-forge
 ipython_genutils          0.2.0                      py_1    conda-forge
 isort                     5.0.7            py37hc8dfbb8_0    conda-forge
 jedi                      0.18.0           py37h89c1867_2    conda-forge
 jinja2                    2.11.3             pyh44b312d_0    conda-forge
 jpeg                      9d                   h36c2ea0_0    conda-forge
 jsonschema                3.2.0                      py_2    conda-forge
 jupyter_client            6.1.11             pyhd8ed1ab_1    conda-forge
 jupyter_core              4.7.1            py37h89c1867_0    conda-forge
 jupyterlab_pygments       0.1.2              pyh9f0ad1d_0    conda-forge
 krb5                      1.17.2               h926e7f8_0    conda-forge
 lcms2                     2.12                 hddcbb42_0    conda-forge
 ld_impl_linux-64          2.35.1               hea4e1c9_2    conda-forge
 libblas                   3.9.0                8_openblas    conda-forge
 libcblas                  3.9.0                8_openblas    conda-forge
 libcurl                   7.71.1               hcdd3856_8    conda-forge
 libedit                   3.1.20191231         he28a2e2_2    conda-forge
 libev                     4.33                 h516909a_1    conda-forge
 libevent                  2.1.10               hcdb4288_3    conda-forge
 libffi                    3.3                  h58526e2_2    conda-forge
 libgcc-ng                 9.3.0               h2828fa1_18    conda-forge
 libgfortran-ng            9.3.0               hff62375_18    conda-forge
 libgfortran5              9.3.0               hff62375_18    conda-forge
 libgomp                   9.3.0               h2828fa1_18    conda-forge
 liblapack                 3.9.0                8_openblas    conda-forge
 libllvm10                 10.0.1               he513fc3_3    conda-forge
 libllvm8                  8.0.1                hc9558a2_0    conda-forge
 libnghttp2                1.43.0               h812cca2_0    conda-forge
 libopenblas               0.3.12          pthreads_h4812303_1    conda-forge
 libpng                    1.6.37               h21135ba_2    conda-forge
 libprotobuf               3.14.0               h780b84a_0    conda-forge
 librmm                    0.18.0a210217   cuda11.0_g99b5d86_36    rapidsai-nightly
 libsodium                 1.0.18               h36c2ea0_1    conda-forge
 libssh2                   1.9.0                hab1572f_5    conda-forge
 libstdcxx-ng              9.3.0               h6de172a_18    conda-forge
 libthrift                 0.13.0               h5aa387f_6    conda-forge
 libtiff                   4.2.0                hdc55705_0    conda-forge
 libutf8proc               2.6.1                h7f98852_0    conda-forge
 libuv                     1.41.0               h7f98852_0    conda-forge
 libwebp-base              1.2.0                h7f98852_0    conda-forge
 llvmlite                  0.35.0           py37h9d7f4d0_1    conda-forge
 locket                    0.2.0                      py_2    conda-forge
 lz4-c                     1.9.3                h9c3ff4c_0    conda-forge
 markdown                  3.3.3              pyh9f0ad1d_0    conda-forge
 markupsafe                1.1.1            py37h5e8e339_3    conda-forge
 mccabe                    0.6.1                      py_1    conda-forge
 mimesis                   4.0.0              pyh9f0ad1d_0    conda-forge
 mistune                   0.8.4           py37h5e8e339_1003    conda-forge
 more-itertools            8.7.0              pyhd8ed1ab_0    conda-forge
 msgpack-python            1.0.2            py37h2527ec5_1    conda-forge
 mypy                      0.782                      py_0    conda-forge
 mypy_extensions           0.4.3            py37h89c1867_3    conda-forge
 nbclient                  0.5.2              pyhd8ed1ab_0    conda-forge
 nbconvert                 6.0.7            py37h89c1867_3    conda-forge
 nbformat                  5.1.2              pyhd8ed1ab_1    conda-forge
 nbsphinx                  0.8.1              pyh44b312d_0    conda-forge
 nccl                      2.7.8.1            h4962215_100    nvidia
 ncurses                   6.2                  h58526e2_4    conda-forge
 nest-asyncio              1.4.3              pyhd8ed1ab_0    conda-forge
 nodeenv                   1.5.0              pyh9f0ad1d_0    conda-forge
 notebook                  6.2.0            py37h89c1867_0    conda-forge
 numba                     0.52.0           py37hdc94413_0    conda-forge
 numpy                     1.20.1           py37haa41c4c_0    conda-forge
 numpydoc                  1.1.0                      py_1    conda-forge
 nvtx                      0.2.3            py37h5e8e339_0    conda-forge
 olefile                   0.46               pyh9f0ad1d_1    conda-forge
 openssl                   1.1.1j               h7f98852_0    conda-forge
 orc                       1.6.7                h7950760_0    conda-forge
 packaging                 20.9               pyh44b312d_0    conda-forge
 pandas                    1.1.5            py37hdc94413_0    conda-forge
 pandoc                    1.19.2                        0    conda-forge
 pandocfilters             1.4.2                      py_1    conda-forge
 parquet-cpp               1.5.1                         2    conda-forge
 parso                     0.8.1              pyhd8ed1ab_0    conda-forge
 partd                     1.1.0                      py_0    conda-forge
 pathspec                  0.8.1              pyhd3deb0d_0    conda-forge
 pexpect                   4.8.0              pyh9f0ad1d_2    conda-forge
 pickleshare               0.7.5                   py_1003    conda-forge
 pillow                    8.1.0            py37h4600e1f_2    conda-forge
 pip                       21.0.1             pyhd8ed1ab_0    conda-forge
 pluggy                    0.13.1           py37h89c1867_4    conda-forge
 pre-commit                2.10.1           py37h89c1867_0    conda-forge
 pre_commit                2.10.1               hd8ed1ab_0    conda-forge
 prometheus_client         0.9.0              pyhd3deb0d_0    conda-forge
 prompt-toolkit            3.0.16             pyha770c72_0    conda-forge
 protobuf                  3.14.0           py37hcd2ae1e_1    conda-forge
 psutil                    5.8.0            py37h5e8e339_1    conda-forge
 ptyprocess                0.7.0              pyhd3deb0d_0    conda-forge
 py                        1.10.0             pyhd3deb0d_0    conda-forge
 py-cpuinfo                7.0.0              pyh9f0ad1d_0    conda-forge
 pyarrow                   1.0.1           py37h3dc597d_30_cuda    conda-forge
 pycodestyle               2.6.0              pyh9f0ad1d_0    conda-forge
 pycparser                 2.20               pyh9f0ad1d_2    conda-forge
 pyflakes                  2.2.0              pyh9f0ad1d_0    conda-forge
 pygments                  2.8.0              pyhd8ed1ab_0    conda-forge
 pyopenssl                 20.0.1             pyhd8ed1ab_0    conda-forge
 pyorc                     0.4.0                    pypi_0    pypi
 pyparsing                 2.4.7              pyh9f0ad1d_0    conda-forge
 pyrsistent                0.17.3           py37h5e8e339_2    conda-forge
 pysocks                   1.7.1            py37h89c1867_3    conda-forge
 pytest                    6.2.2            py37h89c1867_0    conda-forge
 pytest-benchmark          3.2.3              pyh9f0ad1d_0    conda-forge
 pytest-forked             1.3.0              pyhd3deb0d_0    conda-forge
 pytest-xdist              2.2.1              pyhd8ed1ab_0    conda-forge
 python                    3.7.9           hffdb5ce_100_cpython    conda-forge
 python-dateutil           2.8.1                      py_0    conda-forge
 python_abi                3.7                     1_cp37m    conda-forge
 pytz                      2021.1             pyhd8ed1ab_0    conda-forge
 pyyaml                    5.4.1            py37h5e8e339_0    conda-forge
 pyzmq                     22.0.3           py37h499b945_0    conda-forge
 rapidjson                 1.1.0             he1b5a44_1002    conda-forge
 re2                       2020.11.01           h58526e2_0    conda-forge
 readline                  8.0                  he28a2e2_2    conda-forge
 recommonmark              0.7.1              pyhd8ed1ab_0    conda-forge
 regex                     2020.11.13       py37h5e8e339_1    conda-forge
 requests                  2.25.1             pyhd3deb0d_0    conda-forge
 rhash                     1.4.1                h7f98852_0    conda-forge
 rmm                       0.18.0a210217   cuda_11.0_py37_g99b5d86_36    rapidsai-nightly
 s2n                       0.10.26              h9b69904_0    conda-forge
 send2trash                1.5.0                      py_0    conda-forge
 setuptools                49.6.0           py37h89c1867_3    conda-forge
 six                       1.15.0             pyh9f0ad1d_0    conda-forge
 snappy                    1.1.8                he1b5a44_3    conda-forge
 snowballstemmer           2.1.0              pyhd8ed1ab_0    conda-forge
 sortedcontainers          2.3.0              pyhd8ed1ab_0    conda-forge
 spdlog                    1.7.0                hc9558a2_2    conda-forge
 sphinx                    3.5.1              pyhd8ed1ab_0    conda-forge
 sphinx-copybutton         0.3.1              pyhd8ed1ab_0    conda-forge
 sphinx-markdown-tables    0.0.15             pyhd3deb0d_0    conda-forge
 sphinx_rtd_theme          0.5.1              pyhd3deb0d_0    conda-forge
 sphinxcontrib-applehelp   1.0.2                      py_0    conda-forge
 sphinxcontrib-devhelp     1.0.2                      py_0    conda-forge
 sphinxcontrib-htmlhelp    1.0.3                      py_0    conda-forge
 sphinxcontrib-jsmath      1.0.1                      py_0    conda-forge
 sphinxcontrib-qthelp      1.0.3                      py_0    conda-forge
 sphinxcontrib-serializinghtml 1.1.4                      py_0    conda-forge
 sphinxcontrib-websupport  1.2.4              pyh9f0ad1d_0    conda-forge
 sqlite                    3.34.0               h74cdb3f_0    conda-forge
 streamz                   0.6.2              pyh44b312d_0    conda-forge
 tblib                     1.6.0                      py_0    conda-forge
 terminado                 0.9.2            py37h89c1867_0    conda-forge
 testpath                  0.4.4                      py_0    conda-forge
 tk                        8.6.10               h21135ba_1    conda-forge
 toml                      0.10.2             pyhd8ed1ab_0    conda-forge
 toolz                     0.11.1                     py_0    conda-forge
 tornado                   6.1              py37h5e8e339_1    conda-forge
 traitlets                 5.0.5                      py_0    conda-forge
 typed-ast                 1.4.2            py37h5e8e339_0    conda-forge
 typing_extensions         3.7.4.3                    py_0    conda-forge
 urllib3                   1.26.3             pyhd8ed1ab_0    conda-forge
 virtualenv                20.4.2           py37h89c1867_0    conda-forge
 wcwidth                   0.2.5              pyh9f0ad1d_2    conda-forge
 webencodings              0.5.1                      py_1    conda-forge
 wheel                     0.36.2             pyhd3deb0d_0    conda-forge
 xz                        5.2.5                h516909a_1    conda-forge
 yaml                      0.2.5                h516909a_0    conda-forge
 zeromq                    4.3.4                h9c3ff4c_0    conda-forge
 zict                      2.0.0                      py_0    conda-forge
 zipp                      3.4.0                      py_0    conda-forge
 zlib                      1.2.11            h516909a_1010    conda-forge
 zstd                      1.4.8                ha95c52a_1    conda-forge

Additional context
I found this while working on tracking down another bug. I haven't done much to triage it, except confirming that this does not occur without Dask (e.g. on a direct call of df.describe() in the above.

@wphicks wphicks added Needs Triage Need team to review and classify bug Something isn't working labels Feb 17, 2021
@wphicks
Copy link
Author

wphicks commented Feb 17, 2021

Just discovered that 84886781 also produces a mismatch, though in this case the reported std is not NaN; it's just wrong.

@wphicks wphicks changed the title [BUG] std incorrectly reported as NaN in dask describe calls for specific dataframe values [BUG] std incorrectly calculated in dask describe calls for specific dataframe values Feb 17, 2021
@kkraus14 kkraus14 added Python Affects Python cuDF API. ! - Hotfix Hotfix is a bug that affects the majority of users for which there is no reasonable workaround ! - Release and removed Needs Triage Need team to review and classify labels Feb 23, 2021
@pentschev
Copy link
Member

pentschev commented Feb 24, 2021

The way how dask_cudf is computing var, which is in

@derived_from(pd.DataFrame)
def var(
self,
axis=None,
skipna=True,
ddof=1,
split_every=False,
dtype=None,
out=None,
):
axis = self._validate_axis(axis)
meta = self._meta_nonempty.var(axis=axis, skipna=skipna)
if axis == 1:
result = map_partitions(
M.var,
self,
meta=meta,
token=self._token_prefix + "var",
axis=axis,
skipna=skipna,
ddof=ddof,
)
return handle_out(out, result)
else:
num = self._get_numeric_data()
x = 1.0 * num.sum(skipna=skipna, split_every=split_every)
x2 = 1.0 * (num ** 2).sum(skipna=skipna, split_every=split_every)
n = num.count(split_every=split_every)
name = self._token_prefix + "var"
result = map_partitions(
var_aggregate, x2, x, n, token=name, meta=meta, ddof=ddof
)
if isinstance(self, DataFrame):
result.divisions = (min(self.columns), max(self.columns))
return handle_out(out, result)
and then
def var_aggregate(x2, x, n, ddof):
try:
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
result = (x2 / n) - (x / n) ** 2
if ddof != 0:
result = result * n / (n - ddof)
return result
except ZeroDivisionError:
return np.float64(np.nan)
seem to be the problem resulting in numerical imprecisions for large numbers, see example below:

In [1]: import cudf, dask_cudf, dask.dataframe as dd, dask.array as da, pandas as pd, numpy as np

In [2]: gdf = dask_cudf.from_cudf(cudf.Series([9.39590082e+08, 9.39590082e+08, 9.39590082e+08]), npartitions=1)

In [3]: gdf.var().compute()
Out[3]: -192.0

In [4]: a = np.array([9.39590082e+08, 9.39590082e+08, 9.39590082e+08])

In [5]: a.var()
Out[5]: 0.0

In [6]: x = a.sum()

In [7]: x2 = (a ** 2).sum()

In [8]: n = len(a)

In [9]: (x2 / n)
Out[9]: 8.828295221927666e+17

In [10]: (x / n) ** 2
Out[10]: 8.828295221927667e+17

In [11]: (x2 / n) - (x / n) ** 2
Out[11]: -128.0

The final result of var for the case above is a negative number, for which np.sqrt will be called in std, thus resulting in NaN.

I believe both code pieces in dask_cudf are taken from https://github.com/dask/dask/blob/895c9541044e16809151f0e3db95c48ea338c6d3/dask/bag/chunk.py#L20-L33. NumPy seems to compute using a different (but perhaps inefficient for distributed systems) way to compute it (see Notes in numpy.std), which is probably why it's not reproducible there.

@jakirkham
Copy link
Member

cc @rjzamora (in case you have thoughts here 🙂)

@rjzamora
Copy link
Member

Thank you for investigating this @pentschev - dask_cudf is clearly using a naive algorithm for var/std that is very easy to parallelize. This approach is known to have numerical-stability issues (as you clearly demonstrated).

Perhaps it makes sense to use the parallel version of Welford's online algorithm (Chan 79')? I seem to get good results when I do something like the following in dask_cudf.DataFrame.var:

            def _local_var(x, skipna):
                n = len(x)
                avg = x.mean(skipna=skipna)
                m2 = ((x - avg)**2).sum(skipna=skipna)
                return n, avg, m2

            def _aggregate_var(parts):
                n, avg, m2 = parts[0]
                for i in range(1, len(parts)):
                    n_a, avg_a, m2_a = n, avg, m2
                    n_b, avg_b, m2_b = parts[i]
                    n = n_a + n_b
                    avg = (n_a * avg_a + n_b * avg_b) / n
                    delta = avg_b - avg_a
                    m2 = m2_a + m2_b + delta ** 2 * n_a * n_b / n
                return m2 / (n - 1)

            dsk = {}
            name = "var-" + tokenize(axis, skipna, ddof, split_every, dtype, out)
            local_name = "local-" + name
            num = self._get_numeric_data()
            parts = []
            for n in range(num.npartitions):
                parts.append((local_name, n))
                dsk[parts[-1]] = (_local_var, (num._name, n), skipna)
            dsk[(name, 0)] = (_aggregate_var, parts)

            graph = HighLevelGraph.from_collections(name, dsk, dependencies=[num])
            return dd.core.new_dd_object(graph, name, meta, (None, None))

rapids-bot bot pushed a commit that referenced this issue Feb 26, 2021
…std (#7453)

Closes #7402 

This PR improves the numerical stability of the `var` (and indirectly `std`) methods in `DataFrame` and `Series`.  As discussed in #7402, the existing (naive) approach is problematic for large numbers with relatively small var/std.

Note that follow-up work may be needed to improve the algorithm(s) in groupby.

Authors:
  - Richard (Rick) Zamora (@rjzamora)

Approvers:
  - William Hicks (@wphicks)
  - Peter Andreas Entschev (@pentschev)
  - Keith Kraus (@kkraus14)
  - @jakirkham

URL: #7453
@jakirkham jakirkham removed ! - Hotfix Hotfix is a bug that affects the majority of users for which there is no reasonable workaround ! - Release labels Feb 27, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working Python Affects Python cuDF API.
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants