-
Notifications
You must be signed in to change notification settings - Fork 915
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix fallback to sort aggregation for grouping only hash aggregate (#9891
) (#9898) The following fixes what looks like an unintended fallback to sort aggregate introduced in #9545 for a grouping only (no aggregation request) case. In the PR, the `std::all_of` function is used to determine whether the aggregation requests would be for struct types. That said, when there are no aggregation requests the `std::all_of` function will return true, causing a fallback to the sort aggregation (relevant code: https://github.com/rapidsai/cudf/pull/9545/files#diff-e409f72ddc11ad10fa0099e21b409b92f12bfac8ba1817266696c34a620aa081R645-R650). I added a benchmark `group_no_requests_benchmark.cu` by mostly copying `group_sum_benchmark.cu` but I changed one critical part. I am re-creating the `groupby` object for each `state`: ``` for (auto _ : state) { cuda_event_timer timer(state, true); cudf::groupby::groupby gb_obj(cudf::table_view({keys}));e auto result = gb_obj.aggregate(requests); } ``` This shows what would happen in the scenario where the `groupby` instance is created each time an aggregate is issued, which would re-create the `helper` each time for the sorted case. If the `groupby` object is not recreated each time, the difference in performance between the before/after cases is negligible. We never recycle a `groupby` instance when using the groupby API from Spark. Posting this as draft for feedback as I am not sure if I handled the benchmark part correctly. This was executed on a T4 GPU. Before the patch: ``` Groupby/BasicNoRequest/10000/manual_time 0.158 ms 0.184 ms 4420 Groupby/BasicNoRequest/1000000/manual_time 1.72 ms 1.74 ms 408 Groupby/BasicNoRequest/10000000/manual_time 18.9 ms 18.9 ms 37 Groupby/BasicNoRequest/100000000/manual_time 198 ms 198 ms 3 ``` Authors: - Alessandro Bellina (https://github.com/abellina) Approvers: - Jake Hemstad (https://github.com/jrhemstad) - Nghia Truong (https://github.com/ttnghia) - Conor Hoekstra (https://github.com/codereport) URL: #9891
- Loading branch information
Showing
3 changed files
with
131 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
/* | ||
* Copyright (c) 2021, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cudf/copying.hpp> | ||
#include <cudf/detail/aggregation/aggregation.hpp> | ||
#include <cudf/groupby.hpp> | ||
#include <cudf/sorting.hpp> | ||
#include <cudf/table/table.hpp> | ||
#include <cudf_test/column_wrapper.hpp> | ||
#include <fixture/benchmark_fixture.hpp> | ||
#include <synchronization/synchronization.hpp> | ||
|
||
#include <memory> | ||
#include <random> | ||
|
||
class Groupby : public cudf::benchmark { | ||
}; | ||
|
||
// TODO: put it in a struct so `uniform` can be remade with different min, max | ||
template <typename T> | ||
T random_int(T min, T max) | ||
{ | ||
static unsigned seed = 13377331; | ||
static std::mt19937 engine{seed}; | ||
static std::uniform_int_distribution<T> uniform{min, max}; | ||
|
||
return uniform(engine); | ||
} | ||
|
||
void BM_basic_no_requests(benchmark::State& state) | ||
{ | ||
using wrapper = cudf::test::fixed_width_column_wrapper<int64_t>; | ||
|
||
const cudf::size_type column_size{(cudf::size_type)state.range(0)}; | ||
|
||
auto data_it = cudf::detail::make_counting_transform_iterator( | ||
0, [=](cudf::size_type row) { return random_int(0, 100); }); | ||
|
||
wrapper keys(data_it, data_it + column_size); | ||
wrapper vals(data_it, data_it + column_size); | ||
|
||
std::vector<cudf::groupby::aggregation_request> requests; | ||
|
||
for (auto _ : state) { | ||
cuda_event_timer timer(state, true); | ||
cudf::groupby::groupby gb_obj(cudf::table_view({keys})); | ||
auto result = gb_obj.aggregate(requests); | ||
} | ||
} | ||
|
||
BENCHMARK_DEFINE_F(Groupby, BasicNoRequest)(::benchmark::State& state) | ||
{ | ||
BM_basic_no_requests(state); | ||
} | ||
|
||
BENCHMARK_REGISTER_F(Groupby, BasicNoRequest) | ||
->UseManualTime() | ||
->Unit(benchmark::kMillisecond) | ||
->Arg(10000) | ||
->Arg(1000000) | ||
->Arg(10000000) | ||
->Arg(100000000); | ||
|
||
void BM_pre_sorted_no_requests(benchmark::State& state) | ||
{ | ||
using wrapper = cudf::test::fixed_width_column_wrapper<int64_t>; | ||
|
||
const cudf::size_type column_size{(cudf::size_type)state.range(0)}; | ||
|
||
auto data_it = cudf::detail::make_counting_transform_iterator( | ||
0, [=](cudf::size_type row) { return random_int(0, 100); }); | ||
auto valid_it = cudf::detail::make_counting_transform_iterator( | ||
0, [=](cudf::size_type row) { return random_int(0, 100) < 90; }); | ||
|
||
wrapper keys(data_it, data_it + column_size); | ||
wrapper vals(data_it, data_it + column_size, valid_it); | ||
|
||
auto keys_table = cudf::table_view({keys}); | ||
auto sort_order = cudf::sorted_order(keys_table); | ||
auto sorted_keys = cudf::gather(keys_table, *sort_order); | ||
// No need to sort values using sort_order because they were generated randomly | ||
|
||
std::vector<cudf::groupby::aggregation_request> requests; | ||
|
||
for (auto _ : state) { | ||
cuda_event_timer timer(state, true); | ||
cudf::groupby::groupby gb_obj(*sorted_keys, cudf::null_policy::EXCLUDE, cudf::sorted::YES); | ||
auto result = gb_obj.aggregate(requests); | ||
} | ||
} | ||
|
||
BENCHMARK_DEFINE_F(Groupby, PreSortedNoRequests)(::benchmark::State& state) | ||
{ | ||
BM_pre_sorted_no_requests(state); | ||
} | ||
|
||
BENCHMARK_REGISTER_F(Groupby, PreSortedNoRequests) | ||
->UseManualTime() | ||
->Unit(benchmark::kMillisecond) | ||
->Arg(1000000) | ||
->Arg(10000000) | ||
->Arg(100000000); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters