-
Notifications
You must be signed in to change notification settings - Fork 916
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2b24f60
commit cb4adb4
Showing
2 changed files
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
/* | ||
* Copyright (c) 2019-2022, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cudf/copying.hpp> | ||
#include <cudf/detail/aggregation/aggregation.hpp> | ||
#include <cudf/groupby.hpp> | ||
#include <cudf/sorting.hpp> | ||
#include <cudf/table/table.hpp> | ||
#include <cudf_test/column_wrapper.hpp> | ||
#include <fixture/benchmark_fixture.hpp> | ||
#include <synchronization/synchronization.hpp> | ||
|
||
#include <random> | ||
|
||
class Groupby : public cudf::benchmark { | ||
}; | ||
|
||
template <typename T> | ||
T random_int(T min, T max) | ||
{ | ||
static unsigned seed = 13377331; | ||
static std::mt19937 engine{seed}; | ||
static std::uniform_int_distribution<T> uniform{min, max}; | ||
|
||
return uniform(engine); | ||
} | ||
|
||
void BM_basic_sum_scan(benchmark::State& state) | ||
{ | ||
using wrapper = cudf::test::fixed_width_column_wrapper<int64_t>; | ||
|
||
const cudf::size_type column_size{(cudf::size_type)state.range(0)}; | ||
|
||
auto data_it = cudf::detail::make_counting_transform_iterator( | ||
0, [=](cudf::size_type row) { return random_int(0, 100); }); | ||
|
||
wrapper keys(data_it, data_it + column_size); | ||
wrapper vals(data_it, data_it + column_size); | ||
|
||
cudf::groupby::groupby gb_obj(cudf::table_view({keys, keys, keys})); | ||
|
||
std::vector<cudf::groupby::scan_request> requests; | ||
requests.emplace_back(cudf::groupby::scan_request()); | ||
requests[0].values = vals; | ||
requests[0].aggregations.push_back(cudf::make_sum_aggregation<cudf::groupby_scan_aggregation>()); | ||
|
||
for (auto _ : state) { | ||
cuda_event_timer timer(state, true); | ||
|
||
auto result = gb_obj.scan(requests); | ||
} | ||
} | ||
|
||
BENCHMARK_DEFINE_F(Groupby, BasicSumScan)(::benchmark::State& state) { BM_basic_sum_scan(state); } | ||
|
||
BENCHMARK_REGISTER_F(Groupby, BasicSumScan) | ||
->UseManualTime() | ||
->Unit(benchmark::kMillisecond) | ||
->Arg(1000000) | ||
->Arg(10000000) | ||
->Arg(100000000); | ||
|
||
void BM_pre_sorted_sum_scan(benchmark::State& state) | ||
{ | ||
using wrapper = cudf::test::fixed_width_column_wrapper<int64_t>; | ||
|
||
const cudf::size_type column_size{(cudf::size_type)state.range(0)}; | ||
|
||
auto data_it = cudf::detail::make_counting_transform_iterator( | ||
0, [=](cudf::size_type row) { return random_int(0, 100); }); | ||
auto valid_it = cudf::detail::make_counting_transform_iterator( | ||
0, [=](cudf::size_type row) { return random_int(0, 100) < 90; }); | ||
|
||
wrapper keys(data_it, data_it + column_size); | ||
wrapper vals(data_it, data_it + column_size, valid_it); | ||
|
||
auto keys_table = cudf::table_view({keys}); | ||
auto sort_order = cudf::sorted_order(keys_table); | ||
auto sorted_keys = cudf::gather(keys_table, *sort_order); | ||
// No need to sort values using sort_order because they were generated randomly | ||
|
||
cudf::groupby::groupby gb_obj(*sorted_keys, cudf::null_policy::EXCLUDE, cudf::sorted::YES); | ||
|
||
std::vector<cudf::groupby::scan_request> requests; | ||
requests.emplace_back(cudf::groupby::scan_request()); | ||
requests[0].values = vals; | ||
requests[0].aggregations.push_back(cudf::make_sum_aggregation<cudf::groupby_scan_aggregation>()); | ||
|
||
for (auto _ : state) { | ||
cuda_event_timer timer(state, true); | ||
|
||
auto result = gb_obj.scan(requests); | ||
} | ||
} | ||
|
||
BENCHMARK_DEFINE_F(Groupby, PreSortedSumScan)(::benchmark::State& state) | ||
{ | ||
BM_pre_sorted_sum_scan(state); | ||
} | ||
|
||
BENCHMARK_REGISTER_F(Groupby, PreSortedSumScan) | ||
->UseManualTime() | ||
->Unit(benchmark::kMillisecond) | ||
->Arg(1000000) | ||
->Arg(10000000) | ||
->Arg(100000000); |