-
Notifications
You must be signed in to change notification settings - Fork 915
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
avro reader integration tests (#7156)
Added some avro reader integration tests for fastavro. These cover type detection, single-value parsing, and null value parsing, but do not cover parsing multiple values. Authors: - Christopher Harris (@cwharris) Approvers: - Vukasin Milovanovic (@vuule) - GALI PREM SAGAR (@galipremsagar) URL: #7156
- Loading branch information
Showing
2 changed files
with
209 additions
and
108 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
209 changes: 209 additions & 0 deletions
209
python/cudf/cudf/tests/test_avro_reader_fastavro_integration.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
# Copyright (c) 2021, NVIDIA CORPORATION. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import io | ||
|
||
import fastavro | ||
import pytest | ||
|
||
import cudf | ||
from cudf.tests.utils import assert_eq | ||
|
||
|
||
def cudf_from_avro_util(schema, records): | ||
|
||
schema = [] if schema is None else fastavro.parse_schema(schema) | ||
buffer = io.BytesIO() | ||
fastavro.writer(buffer, schema, records) | ||
buffer.seek(0) | ||
return cudf.read_avro(buffer) | ||
|
||
|
||
avro_type_params = [ | ||
("boolean", "bool"), | ||
("int", "int32"), | ||
("long", "int64"), | ||
("float", "float32"), | ||
("double", "float64"), | ||
("bytes", "str"), | ||
("string", "str"), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("avro_type, expected_dtype", avro_type_params) | ||
@pytest.mark.parametrize("namespace", [None, "root_ns"]) | ||
@pytest.mark.parametrize("nullable", [True, False]) | ||
def test_can_detect_dtype_from_avro_type( | ||
avro_type, expected_dtype, namespace, nullable | ||
): | ||
avro_type = avro_type if not nullable else ["null", avro_type] | ||
|
||
schema = fastavro.parse_schema( | ||
{ | ||
"type": "record", | ||
"name": "test", | ||
"namespace": namespace, | ||
"fields": [{"name": "prop", "type": avro_type}], | ||
} | ||
) | ||
|
||
actual = cudf_from_avro_util(schema, []) | ||
|
||
expected = cudf.DataFrame( | ||
{"prop": cudf.Series(None, None, expected_dtype)} | ||
) | ||
|
||
assert_eq(expected, actual) | ||
|
||
|
||
@pytest.mark.parametrize("avro_type, expected_dtype", avro_type_params) | ||
@pytest.mark.parametrize("namespace", [None, "root_ns"]) | ||
@pytest.mark.parametrize("nullable", [True, False]) | ||
def test_can_detect_dtype_from_avro_type_nested( | ||
avro_type, expected_dtype, namespace, nullable | ||
): | ||
avro_type = avro_type if not nullable else ["null", avro_type] | ||
|
||
schema_leaf = { | ||
"name": "leaf", | ||
"type": "record", | ||
"fields": [{"name": "prop3", "type": avro_type}], | ||
} | ||
|
||
schema_child = { | ||
"name": "child", | ||
"type": "record", | ||
"fields": [{"name": "prop2", "type": schema_leaf}], | ||
} | ||
|
||
schema_root = { | ||
"name": "root", | ||
"type": "record", | ||
"namespace": namespace, | ||
"fields": [{"name": "prop1", "type": schema_child}], | ||
} | ||
|
||
actual = cudf_from_avro_util(schema_root, []) | ||
|
||
col_name = "{ns}child.{ns}leaf.prop3".format( | ||
ns="" if namespace is None else namespace + "." | ||
) | ||
|
||
expected = cudf.DataFrame( | ||
{col_name: cudf.Series(None, None, expected_dtype)} | ||
) | ||
|
||
assert_eq(expected, actual) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"avro_type, cudf_type, avro_val, cudf_val", | ||
[ | ||
("boolean", "bool", True, True), | ||
("boolean", "bool", False, False), | ||
("int", "int32", 1234, 1234), | ||
("long", "int64", 1234, 1234), | ||
("float", "float32", 12.34, 12.34), | ||
("double", "float64", 12.34, 12.34), | ||
("string", "str", "heyϴ", "heyϴ"), | ||
# ("bytes", "str", "heyϴ", "heyϴ"), | ||
], | ||
) | ||
def test_can_parse_single_value(avro_type, cudf_type, avro_val, cudf_val): | ||
|
||
schema_root = { | ||
"name": "root", | ||
"type": "record", | ||
"fields": [{"name": "prop", "type": ["null", avro_type]}], | ||
} | ||
|
||
records = [ | ||
{"prop": avro_val}, | ||
] | ||
|
||
actual = cudf_from_avro_util(schema_root, records) | ||
|
||
expected = cudf.DataFrame( | ||
{"prop": cudf.Series(data=[cudf_val], dtype=cudf_type)} | ||
) | ||
|
||
assert_eq(expected, actual) | ||
|
||
|
||
@pytest.mark.parametrize("avro_type, cudf_type", avro_type_params) | ||
def test_can_parse_single_null(avro_type, cudf_type): | ||
|
||
schema_root = { | ||
"name": "root", | ||
"type": "record", | ||
"fields": [{"name": "prop", "type": ["null", avro_type]}], | ||
} | ||
|
||
records = [{"prop": None}] | ||
|
||
actual = cudf_from_avro_util(schema_root, records) | ||
|
||
expected = cudf.DataFrame( | ||
{"prop": cudf.Series(data=[None], dtype=cudf_type)} | ||
) | ||
|
||
assert_eq(expected, actual) | ||
|
||
|
||
@pytest.mark.parametrize("avro_type, cudf_type", avro_type_params) | ||
def test_can_parse_no_data(avro_type, cudf_type): | ||
|
||
schema_root = { | ||
"name": "root", | ||
"type": "record", | ||
"fields": [{"name": "prop", "type": ["null", avro_type]}], | ||
} | ||
|
||
records = [] | ||
|
||
actual = cudf_from_avro_util(schema_root, records) | ||
|
||
expected = cudf.DataFrame({"prop": cudf.Series(data=[], dtype=cudf_type)}) | ||
|
||
assert_eq(expected, actual) | ||
|
||
|
||
@pytest.mark.xfail( | ||
reason="cudf avro reader is unable to parse zero-field metadata." | ||
) | ||
@pytest.mark.parametrize("avro_type, cudf_type", avro_type_params) | ||
def test_can_parse_no_fields(avro_type, cudf_type): | ||
|
||
schema_root = { | ||
"name": "root", | ||
"type": "record", | ||
"fields": [], | ||
} | ||
|
||
records = [] | ||
|
||
actual = cudf_from_avro_util(schema_root, records) | ||
|
||
expected = cudf.DataFrame() | ||
|
||
assert_eq(expected, actual) | ||
|
||
|
||
def test_can_parse_no_schema(): | ||
|
||
schema_root = None | ||
records = [] | ||
actual = cudf_from_avro_util(schema_root, records) | ||
expected = cudf.DataFrame() | ||
assert_eq(expected, actual) |