-
Notifications
You must be signed in to change notification settings - Fork 915
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement all methods of groupby rank aggregation in libcudf, python (#…
…9569) Addresses part of #3591 - [x] move RANK (min method), DENSE_RANK (dense method) into single RANK aggregation - [x] max method - [x] average method - [x] first method - [x] percentage - [x] order, null order RANK, DENSE_RANK was implemented for spark requirement. Pandas groupby has 3 more methods. `rank(column_view, rank_method)` already has all 5 methods implemented. Current implementation has 2 separate aggregations RANK and DENSE_RANK. This is merged to single RANK with parameters `rank_aggregation(rank_method method, null_policy null_handling, bool percentage)` Groupby.rank support for 3 more methods will be added. This PR is also pre-requisite for spearman correlation. Additionally - [x] Cython, Python plumbing - [x] benchmark for groupby rank (all methods) - [x] PERCENT_RANK aggregation is replaced with MIN_0_INDEXED rank_method in RANK aggregation Authors: - Karthikeyan (https://github.com/karthikeyann) Approvers: - Vyas Ramasubramani (https://github.com/vyasr) - MithunR (https://github.com/mythrocks) - Jake Hemstad (https://github.com/jrhemstad) URL: #9569
- Loading branch information
1 parent
20569f6
commit 9ac2477
Showing
28 changed files
with
944 additions
and
540 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
/* | ||
* Copyright (c) 2022, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
#include <benchmarks/common/generate_input.hpp> | ||
#include <benchmarks/fixture/rmm_pool_raii.hpp> | ||
#include <benchmarks/synchronization/synchronization.hpp> | ||
|
||
#include <cudf/groupby.hpp> | ||
#include <cudf/sorting.hpp> | ||
#include <cudf/table/table_view.hpp> | ||
#include <cudf/types.hpp> | ||
|
||
#include <nvbench/nvbench.cuh> | ||
|
||
template <cudf::rank_method method> | ||
static void nvbench_groupby_rank(nvbench::state& state, | ||
nvbench::type_list<nvbench::enum_type<method>>) | ||
{ | ||
using namespace cudf; | ||
using type = int64_t; | ||
constexpr auto dtype = type_to_id<int64_t>(); | ||
cudf::rmm_pool_raii pool_raii; | ||
|
||
bool const is_sorted = state.get_int64("is_sorted"); | ||
cudf::size_type const column_size = state.get_int64("data_size"); | ||
constexpr int num_groups = 100; | ||
|
||
data_profile profile; | ||
profile.set_null_frequency(std::nullopt); | ||
profile.set_cardinality(0); | ||
profile.set_distribution_params<type>(dtype, distribution_id::UNIFORM, 0, num_groups); | ||
|
||
auto source_table = create_random_table({dtype, dtype}, row_count{column_size}, profile); | ||
|
||
// values to be pre-sorted too for groupby rank | ||
if (is_sorted) source_table = cudf::sort(*source_table); | ||
|
||
table_view keys{{source_table->view().column(0)}}; | ||
column_view order_by{source_table->view().column(1)}; | ||
|
||
auto agg = cudf::make_rank_aggregation<groupby_scan_aggregation>(method); | ||
std::vector<groupby::scan_request> requests; | ||
requests.emplace_back(groupby::scan_request()); | ||
requests[0].values = order_by; | ||
requests[0].aggregations.push_back(std::move(agg)); | ||
|
||
groupby::groupby gb_obj(keys, null_policy::EXCLUDE, is_sorted ? sorted::YES : sorted::NO); | ||
|
||
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
rmm::cuda_stream_view stream_view{launch.get_stream()}; | ||
// groupby scan uses sort implementation | ||
auto result = gb_obj.scan(requests); | ||
}); | ||
} | ||
|
||
enum class rank_method : int32_t {}; | ||
|
||
NVBENCH_DECLARE_ENUM_TYPE_STRINGS( | ||
cudf::rank_method, | ||
[](cudf::rank_method value) { | ||
switch (value) { | ||
case cudf::rank_method::FIRST: return "FIRST"; | ||
case cudf::rank_method::AVERAGE: return "AVERAGE"; | ||
case cudf::rank_method::MIN: return "MIN"; | ||
case cudf::rank_method::MAX: return "MAX"; | ||
case cudf::rank_method::DENSE: return "DENSE"; | ||
default: return "unknown"; | ||
} | ||
}, | ||
[](cudf::rank_method value) { | ||
switch (value) { | ||
case cudf::rank_method::FIRST: return "cudf::rank_method::FIRST"; | ||
case cudf::rank_method::AVERAGE: return "cudf::rank_method::AVERAGE"; | ||
case cudf::rank_method::MIN: return "cudf::rank_method::MIN"; | ||
case cudf::rank_method::MAX: return "cudf::rank_method::MAX"; | ||
case cudf::rank_method::DENSE: return "cudf::rank_method::DENSE"; | ||
default: return "unknown"; | ||
} | ||
}) | ||
|
||
using methods = nvbench::enum_type_list<cudf::rank_method::AVERAGE, | ||
cudf::rank_method::DENSE, | ||
cudf::rank_method::FIRST, | ||
cudf::rank_method::MAX, | ||
cudf::rank_method::MIN>; | ||
|
||
NVBENCH_BENCH_TYPES(nvbench_groupby_rank, NVBENCH_TYPE_AXES(methods)) | ||
.set_type_axes_names({"rank_method"}) | ||
.set_name("groupby_rank") | ||
.add_int64_axis("data_size", | ||
{ | ||
1000000, // 1M | ||
10000000, // 10M | ||
100000000, // 100M | ||
}) | ||
|
||
.add_int64_axis("is_sorted", {0, 1}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.