Skip to content

rajeev-netomi/docker-superset

 
 

Repository files navigation

Inviting contributors for enhancing & maintaing the project.

docker-superset

Repository for building Docker container of Apache Superset.

Superset

CircleCI License Code Climate PRs Welcome

  • For understanding & knowing more about Superset, please follow Official website and Join the chat at https://gitter.im/airbnb/superset
  • Similarly, for Docker follow curated list of resources.

Images

Image Pulls Tags
abhioncbr/docker-superset Docker Pulls tags

Superset components stack

  • Enhanced/Modified version of the docker container of apache-superset.
  • Superset version: Notation for representing version X.YY.ZZzzz which means either
    • 0.36.0
    • 0.35.0, 0.35.1
    • 0.34.0, 0.34.0rc1
    • latest, 0.32.0rc2
    • 0.29.0rc8, 0.29.0rc7, 0.29.0rc5, 0.29.0rc4
    • 0.28.1, 0.28.0
  • Backend database: MySQL
  • SqlLabs query async mode: Celery
  • Task queue & query cache: Redis
  • Image contains all database plugin dependencies and elastic-search

Superset ports

  • superset portal port: 8088
  • superset celery flower port: 5555

Silent features of the docker image

  • multiple ways to start a container, i.e. either by using docker-compose or by using docker run command.
  • superset all components, i.e. web application, celery worker, celery flower UI can run in the same container or in different containers.
  • container first run sets required database along with examples and the Fabmanager user account with credentials username: admin & password: admin.
  • superset config file i.e superset_config.py should be mounted to the container. No need to rebuild image for changing configurations.
  • the default configuration uses MySQL as a Superset metadata database and Redis as a cache & celery broker.
  • starting the container using docker-compose will start three containers. mysql5.7 as the database, redis3.4 as a cache & celery broker and superset container.
    • expects multiple environment variables defined in docker-compose.yml file. Default environment variables are present in file .env.
    • override default environment variables either by editing .env file or passing through commands like SUPERSET_ENV.
    • permissible value of SUPERSET_ENV can be either local or prod.
    • in local mode one celery worker and superset flask-based superset web application run.
    • in prod mode two celery workers and Gunicorn based superset web application run.
  • starting container using docker run can be a used for complete distributed setup, requires database & Redis URL for startup.
    • single or multiple server(using load balancer) container can be spawned. In the server, Gunicorn based superset web application runs.
    • multiple celery workers container running on same or different machines. In worker, celery worker & flower UI runs.

How to build the image

  • DockerFile uses superset-version as a build-arg, for example: 0.28.0 or 0.29.0rc4
  • build image using docker build command
    docker build -t abhioncbr/docker-superset:<version-tag> --build-arg SUPERSET_VERSION=<superset-version> -f ~/docker-superset/docker-files/Dockerfile .

How to run using Kitmatic

  • Simplest way for exploration purpose, using Kitematic(Run containers through a simple, yet powerful graphical user interface.)
    • Search abhioncbr/docker-superset Image on docker-hub Kitematic-search-docker-supeset

    • Start a container through Kitematic UI. Kitematic-start-superset-container

How to run using docker commands

  • Through general docker commands -

    • first pull a docker-superset image from docker-hub using either

      docker pull abhioncbr/docker-superset

      or for specific superset version by providing version value

      docker pull abhioncbr/docker-superset:<version-tag>
    • Copy superset_config.py, docker-compose.yml, and .env files. I am considering directory structure like below

      docker-superset
           |_ config
           |    |_superset_config.py
           |
           |_docker-files
           |    |_docker-compose.yml
           |    |_.env
      
      
    • using docker-compose:

      • starting a superset image as a superset container in a local mode:

        cd docker-superset/docker-files/ && docker-compose up -d

        or for passing some different environment variables values like below

        cd docker-superset/docker-files/ && SUPERSET_ENV=local SUPERSET_VERSION=<version-tag> docker-compose up -d
      • starting a superset image as a superset container in a prod mode:

        cd docker-superset/docker-files/ && SUPERSET_ENV=prod SUPERSET_VERSION=<version-tag> docker-compose up -d
    • using docker run:

      • starting a superset image as a server container:
        cd docker-superset && docker run -p 8088:8088 -v config:/home/superset/config/ abhioncbr/docker-superset:<version-tag> cluster server <superset_metadata_db_url> <redis_url>
      • starting a superset image as a worker container:
         cd docker-superset && docker run -p 5555:5555 -v config:/home/superset/config/ abhioncbr/docker-superset:<version-tag> cluster worker <superset_metadata_db_url> <redis_url>

    Superset

Distributed execution of superset

  • As mentioned above, docker image of superset can be leveraged to run in complete distributed run
    • load-balancer in front for routing the request from the client to one server container.
    • multiple docker-superset container in server mode for serving the UI of the superset.
    • multiple docker-superset containers in worker mode for executing the SQL queries in an async mode using celery executor.
    • centralised Redis container or Redis-cluster for serving as cache layer and celery task queues for workers.
    • centralised superset metadata database.
  • Image below depicts the docker-superset distributed platform: Distributed-Superset

Published Posts

About

Repository for Docker Image of Apache-Superset. [Docker Image: https://hub.docker.com/r/abhioncbr/docker-superset]

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Shell 56.3%
  • Dockerfile 25.2%
  • Python 18.5%