Ubuntu 18.04.3 LTS
CPU: AMD EPYC 7543 32-Core Processor
GPU: 8 * NVIDIA A5000, Memory: 24G
Python: 3.8
Pytorch: 1.9.0+cu111
Requirements
git clone https://github.com/XL-H/ACCV2022.git
cd ACCV2022
pip install -r requirements.txt
Apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
- Run Data_preprocessing.ipynb
- Remove broken images
- Make csv file
- Resampling
- StratifiedKfold
- Pre-trained models from ImageNet1K/ImageNet21K:
-
Configurations for training can be found in ACCV/config_timm.py
-
Training:
!CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch --nproc_per_node=8 \
/root/ACCV2022/train.py \
--csv-dir autodl-tmp/ACCV_384_balance_fold.csv \
--config-name 'timm' \
--image-size 384 \
--batch-size 7 \
--num-workers 10 \
--init-lr 6e-5 \
--n-epochs 10 \
--cpkt_epoch 1 \
--n_batch_log 300 \
--warm_up_epochs 1 \
--fold 1
- Tools-Train-Inference.ipynb : Training and Inference
Feel free to contact, email: [email protected]