Skip to content

r-luo/Ubuntu-setups

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

Ubuntu-setups (Dual with Windows on 2 SSDs)

  1. Install Ubuntu on one SSD by UEFI on flash drive
  2. Install Windows 10 on the other SSD (with DVD or another flash drive)

Windows will break the GRUB menu from Ubuntu

  1. Use the ubuntu bootable flash drive, boot into "Try ubuntu", open terminal and use the following commands: (Source)
sudo add-apt-repository ppa:yannubuntu/boot-repair
sudo apt-get update
sudo apt-get install -y boot-repair && boot-repair
  1. then select "Recommand repair"
  2. after fix is done, reboot

Then install NVIDIA driver

  1. press "e" when the GRUB menu appears, and add nouveau.modeset=0 to the end of the linux line (Source
  2. then go to terminal and execute
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-361
sudo reboot

install tensorflow

  1. install Anaconda
  2. execute
conda create -n tensorflow python=3.5
source activate tensorflow
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp35-cp35m-linux_x86_64.whl
pip install --ignore-installed --upgrade $TF_BINARY_URL

install cuda and cudnn

  1. First download the cuda run file from NVIDIA
bash cuda_7.5.18_linux.run
# Select "yes" for create symbolic link
  1. download the cudnn library
  2. execute
tar xvzf cudnn-7.5-linux-x64-v5.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Test TensorFlow

  1. Use the following command to find where tensorflow is installed: python -c 'import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))'

  2. go to the directory where tensorflow is located, then cd into models/image/mnist, then use python to run convolutional.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published