Skip to content

Stim v1.5 Python API Reference

Craig Gidney edited this page Jul 28, 2021 · 1 revision

Stim v1.5 API Reference

Index

stim.Circuit

A mutable stabilizer circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit()
    >>> c.append_operation("X", [0])
    >>> c.append_operation("M", [0])
    >>> c.compile_sampler().sample(shots=1)
    array([[1]], dtype=uint8)

    >>> stim.Circuit('''
    ...    H 0
    ...    CNOT 0 1
    ...    M 0 1
    ...    DETECTOR rec[-1] rec[-2]
    ... ''').compile_detector_sampler().sample(shots=1)
    array([[0]], dtype=uint8)

stim.CircuitInstruction

An instruction, like `H 0 1` or `CNOT rec[-1] 5`, from a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     M 0 !1
    ...     X_ERROR(0.125) 5 3
    ... ''')
    >>> circuit[0]
    stim.CircuitInstruction('H', [stim.GateTarget(0)], [])
    >>> circuit[1]
    stim.CircuitInstruction('M', [stim.GateTarget(0), stim.GateTarget(stim.target_inv(1))], [])
    >>> circuit[2]
    stim.CircuitInstruction('X_ERROR', [stim.GateTarget(5), stim.GateTarget(3)], [0.125])

stim.CircuitRepeatBlock

A REPEAT block from a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     REPEAT 5 {
    ...         CX 0 1
    ...         CZ 1 2
    ...     }
    ... ''')
    >>> repeat_block = circuit[1]
    >>> repeat_block.repeat_count
    5
    >>> repeat_block.body_copy()
    stim.Circuit('''
        CX 0 1
        CZ 1 2
    ''')

stim.CompiledDetectorSampler

An analyzed stabilizer circuit whose detection events can be sampled quickly.

stim.CompiledMeasurementSampler

An analyzed stabilizer circuit whose measurements can be sampled quickly.

stim.DemInstruction

An instruction from a detector error model.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...     error(0.125) D0
    ...     error(0.125) D0 D1 L0
    ...     error(0.125) D1 D2
    ...     error(0.125) D2 D3
    ...     error(0.125) D3
    ... ''')
    >>> instruction = model[0]
    >>> instruction
    stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(0)])

stim.DemRepeatBlock

A repeat block from a detector error model.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...     repeat 100 {
    ...         error(0.125) D0 D1
    ...         shift_detectors 1
    ...     }
    ... ''')
    >>> model[0]
    stim.DemRepeatBlock(100, stim.DetectorErrorModel('''
        error(0.125) D0 D1
        shift_detectors 1
    '''))

stim.DemTarget

An instruction target from a detector error model (.dem) file.

stim.DetectorErrorModel

A list of instructions describing error mechanisms in terms of the detection events they produce.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...     error(0.125) D0
    ...     error(0.125) D0 D1 L0
    ...     error(0.125) D1 D2
    ...     error(0.125) D2 D3
    ...     error(0.125) D3
    ... ''')
    >>> len(model)
    5

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     X_ERROR(0.25) 1
    ...     CORRELATED_ERROR(0.375) X0 X1
    ...     M 0 1
    ...     DETECTOR rec[-2]
    ...     DETECTOR rec[-1]
    ... ''').detector_error_model()
    stim.DetectorErrorModel('''
        error(0.125) D0
        error(0.375) D0 D1
        error(0.25) D1
    ''')

stim.GateTarget

Represents a gate target, like `0` or `rec[-1]`, from a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     M 0 !1
    ... ''')
    >>> circuit[0].targets_copy()[0]
    stim.GateTarget(0)
    >>> circuit[0].targets_copy()[1]
    stim.GateTarget(stim.target_inv(1))

stim.PauliString

A signed Pauli tensor product (e.g. "+X \u2297 X \u2297 X" or "-Y \u2297 Z".

Represents a collection of Pauli operations (I, X, Y, Z) applied pairwise to a collection of qubits.

Examples:
    >>> import stim
    >>> stim.PauliString("XX") * stim.PauliString("YY")
    stim.PauliString("-ZZ")
    >>> print(stim.PauliString(5))
    +_____

stim.Tableau

A stabilizer tableau.

Represents a Clifford operation by explicitly storing how that operation conjugates a list of Pauli
group generators into composite Pauli products.

Examples:
    >>> import stim
    >>> stim.Tableau.from_named_gate("H")
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+Z"),
        ],
        zs=[
            stim.PauliString("+X"),
        ],
    )

    >>> t = stim.Tableau.random(5)
    >>> t_inv = t**-1
    >>> print(t * t_inv)
    +-xz-xz-xz-xz-xz-
    | ++ ++ ++ ++ ++
    | XZ __ __ __ __
    | __ XZ __ __ __
    | __ __ XZ __ __
    | __ __ __ XZ __
    | __ __ __ __ XZ

    >>> x2z3 = t.x_output(2) * t.z_output(3)
    >>> t_inv(x2z3)
    stim.PauliString("+__XZ_")

stim.TableauSimulator

A quantum stabilizer circuit simulator whose internal state is an inverse stabilizer tableau.

Supports interactive usage, where gates and measurements are applied on demand.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> if s.measure(0):
    ...     s.h(1)
    ...     s.cnot(1, 2)
    >>> s.measure(1) == s.measure(2)
    True

    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.cnot(0, 1)
    >>> s.current_inverse_tableau()
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+ZX"),
            stim.PauliString("+_X"),
        ],
        zs=[
            stim.PauliString("+X_"),
            stim.PauliString("+XZ"),
        ],
    )

stim.target_combiner() -> stim.GateTarget

Returns a target combiner (`*` in circuit files) that can be used as an operation target.

stim.target_inv(qubit_index: int) -> int

Returns a target flagged as inverted that can be passed into Circuit.append_operation
For example, the '!1' in 'M 0 !1 2' is qubit 1 flagged as inverted,
meaning the measurement result from qubit 1 should be inverted when reported.

stim.target_logical_observable_id(index: int) -> stim.DemTarget

Returns a logical observable id identifying a frame change (e.g. "L5" in a .dem file).

Args:
    index: The index of the observable.

Returns:
    The logical observable target.

stim.target_rec(lookback_index: int) -> int

Returns a record target that can be passed into Circuit.append_operation.
For example, the 'rec[-2]' in 'DETECTOR rec[-2]' is a record target.

stim.target_relative_detector_id(index: int) -> stim.DemTarget

Returns a relative detector id (e.g. "D5" in a .dem file).

Args:
    index: The index of the detector, relative to the current detector offset.

Returns:
    The relative detector target.

stim.target_separator() -> stim.DemTarget

Returns a target separator (e.g. "^" in a .dem file).

stim.target_x(qubit_index: int, invert: bool = False) -> int

Returns a target flagged as Pauli X that can be passed into Circuit.append_operation
For example, the 'X1' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 1 flagged as Pauli X.

stim.target_y(qubit_index: int, invert: bool = False) -> int

Returns a target flagged as Pauli Y that can be passed into Circuit.append_operation
For example, the 'Y2' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 2 flagged as Pauli Y.

stim.target_z(qubit_index: int, invert: bool = False) -> int

Returns a target flagged as Pauli Z that can be passed into Circuit.append_operation
For example, the 'Z3' in 'CORRELATED_ERROR(0.1) X1 Y2 Z3' is qubit 3 flagged as Pauli Z.

stim.Circuit.__add__(self, second: stim.Circuit) -> stim.Circuit

Creates a circuit by appending two circuits.

Examples:
    >>> import stim
    >>> c1 = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c2 = stim.Circuit('''
    ...    M 0 1 2
    ... ''')
    >>> print(c1 + c2)
    X 0
    Y 1 2
    M 0 1 2

stim.Circuit.__eq__(self, arg0: stim.Circuit) -> bool

Determines if two circuits have identical contents.

stim.Circuit.__getitem__(self, index_or_slice: object) -> object

Returns copies of instructions from the circuit.

Args:
    index_or_slice: An integer index picking out an instruction to return, or a slice picking out a range
        of instructions to return as a circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...    X 0
    ...    X_ERROR(0.5) 1 2
    ...    REPEAT 100 {
    ...        X 0
    ...        Y 1 2
    ...    }
    ...    TICK
    ...    M 0
    ...    DETECTOR rec[-1]
    ... ''')
    >>> circuit[1]
    stim.CircuitInstruction('X_ERROR', [stim.GateTarget(1), stim.GateTarget(2)], [0.5])
    >>> circuit[2]
    stim.CircuitRepeatBlock(100, stim.Circuit('''
        X 0
        Y 1 2
    '''))
    >>> circuit[1::2]
    stim.Circuit('''
        X_ERROR(0.5) 1 2
        TICK
        DETECTOR rec[-1]
    ''')

stim.Circuit.__iadd__(self, second: stim.Circuit) -> stim.Circuit

Appends a circuit into the receiving circuit (mutating it).

Examples:
    >>> import stim
    >>> c1 = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c2 = stim.Circuit('''
    ...    M 0 1 2
    ... ''')
    >>> c1 += c2
    >>> print(c1)
    X 0
    Y 1 2
    M 0 1 2

stim.Circuit.__imul__(self, repetitions: int) -> stim.Circuit

Mutates the circuit by putting its contents into a REPEAT block.

Special case: if the repetition count is 0, the circuit is cleared.
Special case: if the repetition count is 1, nothing happens.

Args:
    repetitions: The number of times the REPEAT block should repeat.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c *= 3
    >>> print(c)
    REPEAT 3 {
        X 0
        Y 1 2
    }

stim.Circuit.__init__(self, stim_program_text: str = '') -> None

Creates a stim.Circuit.

Args:
    stim_program_text: Defaults to empty. Describes operations to append into the circuit.

Examples:
    >>> import stim
    >>> empty = stim.Circuit()
    >>> not_empty = stim.Circuit('''
    ...    X 0
    ...    CNOT 0 1
    ...    M 1
    ... ''')

stim.Circuit.__len__(self) -> int

Returns the number of top-level instructions and blocks in the circuit.

Instructions inside of blocks are not included in this count.

Examples:
    >>> import stim
    >>> len(stim.Circuit())
    0
    >>> len(stim.Circuit('''
    ...    X 0
    ...    X_ERROR(0.5) 1 2
    ...    TICK
    ...    M 0
    ...    DETECTOR rec[-1]
    ... '''))
    5
    >>> len(stim.Circuit('''
    ...    REPEAT 100 {
    ...        X 0
    ...        Y 1 2
    ...    }
    ... '''))
    1

stim.Circuit.__mul__(self, repetitions: int) -> stim.Circuit

Returns a circuit with a REPEAT block containing the current circuit's instructions.

Special case: if the repetition count is 0, an empty circuit is returned.
Special case: if the repetition count is 1, an equal circuit with no REPEAT block is returned.

Args:
    repetitions: The number of times the REPEAT block should repeat.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> print(c * 3)
    REPEAT 3 {
        X 0
        Y 1 2
    }

stim.Circuit.__ne__(self, arg0: stim.Circuit) -> bool

Determines if two circuits have non-identical contents.

stim.Circuit.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.Circuit`.

stim.Circuit.__rmul__(self, repetitions: int) -> stim.Circuit

Returns a circuit with a REPEAT block containing the current circuit's instructions.

Special case: if the repetition count is 0, an empty circuit is returned.
Special case: if the repetition count is 1, an equal circuit with no REPEAT block is returned.

Args:
    repetitions: The number of times the REPEAT block should repeat.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> print(3 * c)
    REPEAT 3 {
        X 0
        Y 1 2
    }

stim.Circuit.__str__(self) -> str

Returns stim instructions (that can be saved to a file and parsed by stim) for the current circuit.

stim.Circuit.append_from_stim_program_text(self, stim_program_text: str) -> None

Appends operations described by a STIM format program into the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit()
    >>> c.append_from_stim_program_text('''
    ...    H 0  # comment
    ...    CNOT 0 2
    ...
    ...    M 2
    ...    CNOT rec[-1] 1
    ... ''')
    >>> print(c)
    H 0
    CX 0 2
    M 2
    CX rec[-1] 1

Args:
    text: The STIM program text containing the circuit operations to append.

stim.Circuit.append_operation(self, name: str, targets: List[object], arg: object = None) -> None

Appends an operation into the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit()
    >>> c.append_operation("X", [0])
    >>> c.append_operation("H", [0, 1])
    >>> c.append_operation("M", [0, stim.target_inv(1)])
    >>> c.append_operation("CNOT", [stim.target_rec(-1), 0])
    >>> c.append_operation("X_ERROR", [0], 0.125)
    >>> c.append_operation("CORRELATED_ERROR", [stim.target_x(0), stim.target_y(2)], 0.25)
    >>> print(c)
    X 0
    H 0 1
    M 0 !1
    CX rec[-1] 0
    X_ERROR(0.125) 0
    E(0.25) X0 Y2

Args:
    name: The name of the operation's gate (e.g. "H" or "M" or "CNOT").
    targets: The gate targets. Gates implicitly broadcast over their targets.
    arg: A double or list of doubles parameterizing the gate. Different gates take different arguments. For
        example, X_ERROR takes a probability, OBSERVABLE_INCLUDE takes an observable index, and PAULI_CHANNEL_1
        takes three disjoint probabilities. For backwards compatibility reasons, defaults to (0,) for gates
        that take one argument. Otherwise defaults to no arguments.

stim.Circuit.clear(self) -> None

Clears the contents of the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0
    ...    Y 1 2
    ... ''')
    >>> c.clear()
    >>> c
    stim.Circuit()

stim.Circuit.compile_detector_sampler(self) -> stim.CompiledDetectorSampler

Returns a CompiledDetectorSampler, which can quickly batch sample detection events, for the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    H 0
    ...    CNOT 0 1
    ...    M 0 1
    ...    DETECTOR rec[-1] rec[-2]
    ... ''')
    >>> s = c.compile_detector_sampler()
    >>> s.sample(shots=1)
    array([[0]], dtype=uint8)

stim.Circuit.compile_sampler(self) -> stim.CompiledMeasurementSampler

Returns a CompiledMeasurementSampler, which can quickly batch sample measurements, for the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 2
    ...    M 0 1 2
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample(shots=1)
    array([[0, 0, 1]], dtype=uint8)

stim.Circuit.copy(self) -> stim.Circuit

Returns a copy of the circuit. An independent circuit with the same contents.

Examples:
    >>> import stim

    >>> c1 = stim.Circuit("H 0")
    >>> c2 = c1.copy()
    >>> c2 is c1
    False
    >>> c2 == c1
    True

stim.Circuit.detector_error_model(self, *, decompose_errors: bool = False, flatten_loops: bool = False, allow_gauge_detectors: bool = False, approximate_disjoint_errors: float = False) -> stim.DetectorErrorModel

Returns a stim.DetectorErrorModel describing the error processes in the circuit.

Args:
    decompose_errors: Defaults to false. When set to true, the error analysis attempts to decompose the
        components of composite error mechanisms (such as depolarization errors) into simpler errors, and
        suggest this decomposition via `stim.target_separator()` between the components. For example, in an
        XZ surface code, single qubit depolarization has a Y error term which can be decomposed into simpler
        X and Z error terms. Decomposition fails (causing this method to throw) if it's not possible to
        decompose large errors into simple errors that affect at most two detectors.
    flatten_loops: Defaults to false. When set to true, the output will not contain any `repeat` blocks.
        When set to false, the error analysis watches for loops in the circuit reaching a periodic steady
        state with respect to the detectors being introduced, the error mechanisms that affect them, and the
        locations of the logical observables. When it identifies such a steady state, it outputs a repeat
        block. This is massively more efficient than flattening for circuits that contain loops, but creates
        a more complex output.
    allow_gauge_detectors: Defaults to false. When set to false, the error analysis verifies that detectors
        in the circuit are actually deterministic under noiseless execution of the circuit. When set to
        true, these detectors are instead considered to be part of degrees freedom that can be removed from
        the error model. For example, if detectors D1 and D3 both anti-commute with a reset, then the error
        model has a gauge `error(0.5) D1 D3`. When gauges are identified, one of the involved detectors is
        removed from the system using Gaussian elimination.

        Note that logical observables are still verified to be deterministic, even if this option is set.
    approximate_disjoint_errors: Defaults to false. When set to false, composite error mechanisms with
        disjoint components (such as `PAULI_CHANNEL_1(0.1, 0.2, 0.0)`) can cause the error analysis to throw
        exceptions (because detector error models can only contain independent error mechanisms). When set
        to true, the probabilities of the disjoint cases are instead assumed to be independent
        probabilities. For example, a ``PAULI_CHANNEL_1(0.1, 0.2, 0.0)` becomes equivalent to an
        `X_ERROR(0.1)` followed by a `Z_ERROR(0.2)`. This assumption is an approximation, but it is a good
        approximation for small probabilities.

        This argument can also be set to a probability between 0 and 1, setting a threshold below which the
        approximation is acceptable. Any error mechanisms that have a component probability above the
        threshold will cause an exception to be thrown.

Examples:
    >>> import stim

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     X_ERROR(0.25) 1
    ...     CORRELATED_ERROR(0.375) X0 X1
    ...     M 0 1
    ...     DETECTOR rec[-2]
    ...     DETECTOR rec[-1]
    ... ''').detector_error_model()
    stim.DetectorErrorModel('''
        error(0.125) D0
        error(0.375) D0 D1
        error(0.25) D1
    ''')

stim.Circuit.flattened_operations(self) -> list

Flattens the circuit's operations into a list.

The operations within repeat blocks are actually repeated in the output.

Returns:
    A List[Tuple[name, targets, arg]] of the operations in the circuit.
        name: A string with the gate's name.
        targets: A list of things acted on by the gate. Each thing can be:
            int: The index of a qubit.
            Tuple["inv", int]: The index of a qubit to measure with an inverted result.
            Tuple["rec", int]: A measurement record target like `rec[-1]`.
            Tuple["X", int]: A Pauli X operation to apply during a correlated error.
            Tuple["Y", int]: A Pauli Y operation to apply during a correlated error.
            Tuple["Z", int]: A Pauli Z operation to apply during a correlated error.
        arg: The gate's numeric argument. For most gates this is just 0. For noisy
            gates this is the probability of the noise being applied.

Examples:
    >>> import stim
    >>> stim.Circuit('''
    ...    H 0
    ...    X_ERROR(0.125) 1
    ...    M 0 !1
    ... ''').flattened_operations()
    [('H', [0], 0), ('X_ERROR', [1], 0.125), ('M', [0, ('inv', 1)], 0)]

    >>> stim.Circuit('''
    ...    REPEAT 2 {
    ...        H 6
    ...    }
    ... ''').flattened_operations()
    [('H', [6], 0), ('H', [6], 0)]

stim.Circuit.generated(code_task: str, *, distance: int, rounds: int, after_clifford_depolarization: float = 0.0, before_round_data_depolarization: float = 0.0, before_measure_flip_probability: float = 0.0, after_reset_flip_probability: float = 0.0) -> stim.Circuit

Generates common circuits.

The generated circuits can include configurable noise.

The generated circuits include DETECTOR and OBSERVABLE_INCLUDE annotations so that their detection events
and logical observables can be sampled.

The generated circuits include TICK annotations to mark the progression of time. (E.g. so that converting
them using `stimcirq.stim_circuit_to_cirq_circuit` will produce a `cirq.Circuit` with the intended moment
structure.)

Args:
    code_task: A string identifying the type of circuit to generate. Available types are:
        - `repetition_code:memory`
        - `surface_code:rotated_memory_x`
        - `surface_code:rotated_memory_z`
        - `surface_code:unrotated_memory_x`
        - `surface_code:unrotated_memory_z`
        - `color_code:memory_xyz`
    distance: The desired code distance of the generated circuit. The code distance is the minimum number
        of physical errors needed to cause a logical error. This parameter indirectly determines how many
        qubits the generated circuit uses.
    rounds: How many times the measurement qubits in the generated circuit will be measured. Indirectly
        determines the duration of the generated circuit.
    after_clifford_depolarization: Defaults to 0. The probability (p) of `DEPOLARIZE1(p)` operations to add
        after every single-qubit Clifford operation and `DEPOLARIZE2(p)` operations to add after every
        two-qubit Clifford operation. The after-Clifford depolarizing operations are only included if this
        probability is not 0.
    before_round_data_depolarization: Defaults to 0. The probability (p) of `DEPOLARIZE1(p)` operations to
        apply to every data qubit at the start of a round of stabilizer measurements. The start-of-round
        depolarizing operations are only included if this probability is not 0.
    before_measure_flip_probability: Defaults to 0. The probability (p) of `X_ERROR(p)` operations applied
        to qubits before each measurement (X basis measurements use `Z_ERROR(p)` instead). The
        before-measurement flips are only included if this probability is not 0.
    after_reset_flip_probability: Defaults to 0. The probability (p) of `X_ERROR(p)` operations applied
        to qubits after each reset (X basis resets use `Z_ERROR(p)` instead). The after-reset flips are only
        included if this probability is not 0.

Returns:
    The generated circuit.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit.generated(
    ...     "repetition_code:memory",
    ...     distance=3,
    ...     rounds=10000,
    ...     after_clifford_depolarization=0.0125)
    >>> print(circuit)
    R 0 1 2 3 4 5 6
    TICK
    CX 0 1 2 3 4 5
    DEPOLARIZE2(0.0125) 0 1 2 3 4 5
    TICK
    CX 2 1 4 3 6 5
    DEPOLARIZE2(0.0125) 2 1 4 3 6 5
    TICK
    MR 1 3 5
    DETECTOR(1, 0) rec[-3]
    DETECTOR(3, 0) rec[-2]
    DETECTOR(5, 0) rec[-1]
    REPEAT 9999 {
        TICK
        CX 0 1 2 3 4 5
        DEPOLARIZE2(0.0125) 0 1 2 3 4 5
        TICK
        CX 2 1 4 3 6 5
        DEPOLARIZE2(0.0125) 2 1 4 3 6 5
        TICK
        MR 1 3 5
        SHIFT_COORDS(0, 1)
        DETECTOR(1, 0) rec[-3] rec[-6]
        DETECTOR(3, 0) rec[-2] rec[-5]
        DETECTOR(5, 0) rec[-1] rec[-4]
    }
    M 0 2 4 6
    DETECTOR(1, 1) rec[-3] rec[-4] rec[-7]
    DETECTOR(3, 1) rec[-2] rec[-3] rec[-6]
    DETECTOR(5, 1) rec[-1] rec[-2] rec[-5]
    OBSERVABLE_INCLUDE(0) rec[-1]

stim.Circuit.num_detectors

Counts the number of bits produced when sampling the circuit's detectors.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    DETECTOR rec[-1]
    ...    REPEAT 100 {
    ...        M 0 1 2
    ...        DETECTOR rec[-1]
    ...        DETECTOR rec[-2]
    ...    }
    ... ''')
    >>> c.num_detectors
    201

stim.Circuit.num_measurements

Counts the number of bits produced when sampling the circuit's measurements.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    REPEAT 100 {
    ...        M 0 1
    ...    }
    ... ''')
    >>> c.num_measurements
    201

stim.Circuit.num_observables

Counts the number of bits produced when sampling the circuit's logical observables.

This is one more than the largest observable index given to OBSERVABLE_INCLUDE.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    OBSERVABLE_INCLUDE(2) rec[-1]
    ...    OBSERVABLE_INCLUDE(5) rec[-1]
    ... ''')
    >>> c.num_observables
    6

stim.Circuit.num_qubits

Counts the number of qubits used when simulating the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    M 0
    ...    M 0 1
    ... ''')
    >>> c.num_qubits
    2
    >>> c.append_from_stim_program_text('''
    ...    X 100
    ... ''')
    >>> c.num_qubits
    101

stim.CircuitInstruction.__eq__(self, arg0: stim.CircuitInstruction) -> bool

Determines if two `stim.CircuitInstruction`s are identical.

stim.CircuitInstruction.__init__(self, name: str, targets: List[object], gate_args: List[float] = ()) -> None

Initializes a `stim.CircuitInstruction`.

Args:
    name: The name of the instruction being applied.
    targets: The targets the instruction is being applied to. These can be raw values like `0` and
        `stim.target_rec(-1)`, or instances of `stim.GateTarget`.
    gate_args: The sequence of numeric arguments parameterizing a gate. For noise gates this is their
        probabilities. For OBSERVABLE_INCLUDE it's the logical observable's index.

stim.CircuitInstruction.__ne__(self, arg0: stim.CircuitInstruction) -> bool

Determines if two `stim.CircuitInstruction`s are different.

stim.CircuitInstruction.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CircuitInstruction`.

stim.CircuitInstruction.gate_args_copy(self) -> List[float]

Returns the gate's arguments (numbers parameterizing the instruction).

For noisy gates this typically a list of probabilities.
For OBSERVABLE_INCLUDE it's a singleton list containing the logical observable index.

stim.CircuitInstruction.name

The name of the instruction (e.g. `H` or `X_ERROR` or `DETECTOR`).

stim.CircuitInstruction.targets_copy(self) -> List[stim.GateTarget]

Returns a copy of the targets of the instruction.

stim.CircuitRepeatBlock.__eq__(self, arg0: stim.CircuitRepeatBlock) -> bool

Determines if two `stim.CircuitRepeatBlock`s are identical.

stim.CircuitRepeatBlock.__init__(self, repeat_count: int, body: stim.Circuit) -> None

Initializes a `stim.CircuitRepeatBlock`.

Args:
    repeat_count: The number of times to repeat the block.
    body: The body of the block, as a circuit.

stim.CircuitRepeatBlock.__ne__(self, arg0: stim.CircuitRepeatBlock) -> bool

Determines if two `stim.CircuitRepeatBlock`s are different.

stim.CircuitRepeatBlock.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CircuitRepeatBlock`.

stim.CircuitRepeatBlock.body_copy(self) -> stim.Circuit

Returns a copy of the body of the repeat block.

The copy is forced to ensure it's clear that editing the result will not change the circuit that the repeat
block came from.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     REPEAT 5 {
    ...         CX 0 1
    ...         CZ 1 2
    ...     }
    ... ''')
    >>> repeat_block = circuit[1]
    >>> repeat_block.body_copy()
    stim.Circuit('''
        CX 0 1
        CZ 1 2
    ''')

stim.CircuitRepeatBlock.repeat_count

The repetition count of the repeat block.

Examples:
    >>> import stim
    >>> circuit = stim.Circuit('''
    ...     H 0
    ...     REPEAT 5 {
    ...         CX 0 1
    ...         CZ 1 2
    ...     }
    ... ''')
    >>> repeat_block = circuit[1]
    >>> repeat_block.repeat_count
    5

stim.CompiledDetectorSampler.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledDetectorSampler`.

stim.CompiledDetectorSampler.sample(self, shots: int, *, prepend_observables: bool = False, append_observables: bool = False) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing a batch of detector samples from the circuit.

The circuit must define the detectors using DETECTOR instructions. Observables defined by OBSERVABLE_INCLUDE
instructions can also be included in the results as honorary detectors.

Args:
    shots: The number of times to sample every detector in the circuit.
    prepend_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the start of the results.
    append_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the end of the results.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, n)` where
    `n = num_detectors + num_observables*(append_observables + prepend_observables)`.
    The bit for detection event `m` in shot `s` is at `result[s, m]`.

stim.CompiledDetectorSampler.sample_bit_packed(self, shots: int, *, prepend_observables: bool = False, append_observables: bool = False) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing bit packed batch of detector samples from the circuit.

The circuit must define the detectors using DETECTOR instructions. Observables defined by OBSERVABLE_INCLUDE
instructions can also be included in the results as honorary detectors.

Args:
    shots: The number of times to sample every detector in the circuit.
    prepend_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the start of the results.
    append_observables: Defaults to false. When set, observables are included with the detectors and are
        placed at the end of the results.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, n)` where
    `n = num_detectors + num_observables*(append_observables + prepend_observables)`.
    The bit for detection event `m` in shot `s` is at `result[s, (m // 8)] & 2**(m % 8)`.

stim.CompiledMeasurementSampler.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.CompiledMeasurementSampler`.

stim.CompiledMeasurementSampler.sample(self, shots: int) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing a batch of measurement samples from the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0   2 3
    ...    M 0 1 2 3
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample(shots=1)
    array([[1, 0, 1, 1]], dtype=uint8)

Args:
    shots: The number of times to sample every measurement in the circuit.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, num_measurements)`.
    The bit for measurement `m` in shot `s` is at `result[s, m]`.

stim.CompiledMeasurementSampler.sample_bit_packed(self, shots: int) -> numpy.ndarray[numpy.uint8]

Returns a numpy array containing a bit packed batch of measurement samples from the circuit.

Examples:
    >>> import stim
    >>> c = stim.Circuit('''
    ...    X 0 1 2 3 4 5 6 7     10
    ...    M 0 1 2 3 4 5 6 7 8 9 10
    ... ''')
    >>> s = c.compile_sampler()
    >>> s.sample_bit_packed(shots=1)
    array([[255,   4]], dtype=uint8)

Args:
    shots: The number of times to sample every measurement in the circuit.

Returns:
    A numpy array with `dtype=uint8` and `shape=(shots, (num_measurements + 7) // 8)`.
    The bit for measurement `m` in shot `s` is at `result[s, (m // 8)] & 2**(m % 8)`.

stim.DemInstruction.__eq__(self, arg0: stim.DemInstruction) -> bool

Determines if two instructions have identical contents.

stim.DemInstruction.__init__(self, type: str, args: List[float], targets: List[object]) -> None

Creates a stim.DemInstruction.

Args:
    type: The name of the instruction type (e.g. "error" or "shift_detectors").
    args: Numeric values parameterizing the instruction (e.g. the 0.1 in "error(0.1)").
    targets: The objects the instruction involves (e.g. the "D0" and "L1" in "error(0.1) D0 L1").

Examples:
    >>> import stim
    >>> instruction = stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(5)])
    >>> print(instruction)
    error(0.125) D5

stim.DemInstruction.__ne__(self, arg0: stim.DemInstruction) -> bool

Determines if two instructions have non-identical contents.

stim.DemInstruction.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.DetectorErrorModel`.

stim.DemInstruction.__str__(self) -> str

Returns detector error model (.dem) instructions (that can be parsed by stim) for the model.

stim.DemInstruction.args_copy(self) -> List[float]

Returns a copy of the list of numbers parameterizing the instruction (e.g. the probability of an error).

stim.DemInstruction.targets_copy(self) -> List[object]

Returns a copy of the list of objects the instruction applies to (e.g. affected detectors.

stim.DemInstruction.type

The name of the instruction type (e.g. "error" or "shift_detectors").

stim.DemRepeatBlock.__eq__(self, arg0: stim.DemRepeatBlock) -> bool

Determines if two repeat blocks are identical.

stim.DemRepeatBlock.__init__(self, repeat_count: int, block: stim.DetectorErrorModel) -> None

Creates a stim.DemRepeatBlock.

Args:
    repeat_count: The number of times the repeat block's body is supposed to execute.
    body: The body of the repeat block as a DetectorErrorModel containing the instructions to repeat.

Examples:
    >>> import stim
    >>> repeat_block = stim.DemRepeatBlock(100, stim.DetectorErrorModel('''
    ...     error(0.125) D0 D1
    ...     shift_detectors 1
    ... '''))

stim.DemRepeatBlock.__ne__(self, arg0: stim.DemRepeatBlock) -> bool

Determines if two repeat blocks are different.

stim.DemRepeatBlock.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.DemRepeatBlock`.

stim.DemRepeatBlock.body_copy(self) -> stim.DetectorErrorModel

Returns a copy of the block's body, as a stim.DetectorErrorModel.

stim.DemRepeatBlock.repeat_count

The number of times the repeat block's body is supposed to execute.

stim.DemTarget.__eq__(self, arg0: stim.DemTarget) -> bool

Determines if two `stim.DemTarget`s are identical.

stim.DemTarget.__ne__(self, arg0: stim.DemTarget) -> bool

Determines if two `stim.DemTarget`s are different.

stim.DemTarget.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.DemTarget`.

stim.DemTarget.__str__(self) -> str

Returns a text description of the detector error model target.

stim.DemTarget.is_logical_observable_id(self) -> bool

Determines if the detector error model target is a logical observable id target (like "L5" in a .dem file).

stim.DemTarget.is_relative_detector_id(self) -> bool

Determines if the detector error model target is a relative detector id target (like "D4" in a .dem file).

stim.DemTarget.is_separator(self) -> bool

Determines if the detector error model target is a separator (like "^" in a .dem file).

stim.DemTarget.val

Returns the target's integer value.

Example:

    >>> import stim
    >>> stim.target_relative_detector_id(5).val
    5
    >>> stim.target_logical_observable_id(6).val
    6

stim.DetectorErrorModel.__eq__(self, arg0: stim.DetectorErrorModel) -> bool

Determines if two detector error models have identical contents.

stim.DetectorErrorModel.__getitem__(self, index_or_slice: object) -> object

Returns copies of instructions from the detector error model.

Args:
    index_or_slice: An integer index picking out an instruction to return, or a slice picking out a range
        of instructions to return as a detector error model.

Examples:
Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...    error(0.125) D0
    ...    error(0.125) D1 L1
    ...    REPEAT 100 {
    ...        error(0.125) D1 D2
    ...        shift_detectors 1
    ...    }
    ...    error(0.125) D2
    ...    logical_observable L0
    ...    detector D5
    ... ''')
    >>> model[1]
    stim.DemInstruction('error', [0.125], [stim.target_relative_detector_id(1), stim.target_logical_observable_id(1)])
    >>> model[2]
    stim.DemRepeatBlock(100, stim.DetectorErrorModel('''
        error(0.125) D1 D2
        shift_detectors 1
    '''))
    >>> model[1::2]
    stim.DetectorErrorModel('''
        error(0.125) D1 L1
        error(0.125) D2
        detector D5
    ''')

stim.DetectorErrorModel.__init__(self, detector_error_model_text: str = '') -> None

Creates a stim.DetectorErrorModel.

Args:
    detector_error_model_text: Defaults to empty. Describes instructions to append into the circuit in the
        detector error model (.dem) format.

Examples:
    >>> import stim
    >>> empty = stim.DetectorErrorModel()
    >>> not_empty = stim.DetectorErrorModel('''
    ...    error(0.125) D0 L0
    ... ''')

stim.DetectorErrorModel.__len__(self) -> int

Returns the number of top-level instructions and blocks in the detector error model.

Instructions inside of blocks are not included in this count.

Examples:
    >>> import stim
    >>> len(stim.DetectorErrorModel())
    0
    >>> len(stim.DetectorErrorModel('''
    ...    error(0.1) D0 D1
    ...    shift_detectors 100
    ...    logical_observable L5
    ... '''))
    3
    >>> len(stim.DetectorErrorModel('''
    ...    REPEAT 100 {
    ...        error(0.1) D0 D1
    ...        error(0.1) D1 D2
    ...    }
    ... '''))
    1

stim.DetectorErrorModel.__ne__(self, arg0: stim.DetectorErrorModel) -> bool

Determines if two detector error models have non-identical contents.

stim.DetectorErrorModel.__repr__(self) -> str

"Returns text that is a valid python expression evaluating to an equivalent `stim.DetectorErrorModel`."

stim.DetectorErrorModel.__str__(self) -> str

"Returns detector error model (.dem) instructions (that can be parsed by stim) for the model.");

stim.DetectorErrorModel.clear(self) -> None

Clears the contents of the detector error model.

Examples:
    >>> import stim
    >>> model = stim.DetectorErrorModel('''
    ...    error(0.1) D0 D1
    ... ''')
    >>> model.clear()
    >>> model
    stim.DetectorErrorModel()

stim.DetectorErrorModel.copy(self) -> stim.DetectorErrorModel

Returns a copy of the detector error model. An independent model with the same contents.

Examples:
    >>> import stim

    >>> c1 = stim.DetectorErrorModel("error(0.1) D0 D1")
    >>> c2 = c1.copy()
    >>> c2 is c1
    False
    >>> c2 == c1
    True

stim.DetectorErrorModel.num_detectors

Counts the number of detectors (e.g. `D2`) in the error model.

Detector indices are assumed to be contiguous from 0 up to whatever the maximum detector id is.
If the largest detector's absolute id is n-1, then the number of detectors is n.

Examples:
    >>> import stim

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     X_ERROR(0.25) 1
    ...     CORRELATED_ERROR(0.375) X0 X1
    ...     M 0 1
    ...     DETECTOR rec[-2]
    ...     DETECTOR rec[-1]
    ... ''').detector_error_model().num_detectors
    2

    >>> stim.DetectorErrorModel('''
    ...    error(0.1) D0 D199
    ... ''').num_detectors
    200

    >>> stim.DetectorErrorModel('''
    ...    shift_detectors 1000
    ...    error(0.1) D0 D199
    ... ''').num_detectors
    1200

stim.DetectorErrorModel.num_observables

Counts the number of frame changes (e.g. `L2`) in the error model.

Observable indices are assumed to be contiguous from 0 up to whatever the maximum observable id is.
If the largest observable's id is n-1, then the number of observables is n.

Examples:
    >>> import stim

    >>> stim.Circuit('''
    ...     X_ERROR(0.125) 0
    ...     M 0
    ...     OBSERVABLE_INCLUDE(99) rec[-1]
    ... ''').detector_error_model().num_observables
    100

    >>> stim.DetectorErrorModel('''
    ...    error(0.1) L399
    ... ''').num_observables
    400

stim.GateTarget.__eq__(self, arg0: stim.GateTarget) -> bool

Determines if two `stim.GateTarget`s are identical.

stim.GateTarget.__init__(self, value: object) -> None

Initializes a `stim.GateTarget`.

Args:
    value: A target like `5` or `stim.target_rec(-1)`.

stim.GateTarget.__ne__(self, arg0: stim.GateTarget) -> bool

Determines if two `stim.GateTarget`s are different.

stim.GateTarget.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.GateTarget`.

stim.GateTarget.is_combiner

Returns whether or not this is a `stim.target_combiner()` (a `*` in a circuit file).

stim.GateTarget.is_inverted_result_target

Returns whether or not this is an inverted target.

Inverted targets include inverted qubit targets `stim.target_inv(5)` (`!5` in a circuit file) and
inverted Pauli targets like `stim.target_x(4, invert=True)` (`!X4` in a circuit file).

stim.GateTarget.is_measurement_record_target

Returns whether or not this is a `stim.target_rec` target (e.g. `rec[-5]` in a circuit file).

stim.GateTarget.is_qubit_target

Returns true if this is a qubit target (e.g. `5`) or an inverted qubit target (e.g. `stim.target_inv(4)`).

stim.GateTarget.is_x_target

Returns whether or not this is a `stim.target_x` target (e.g. `X5` in a circuit file).

stim.GateTarget.is_y_target

Returns whether or not this is a `stim.target_y` target (e.g. `Y5` in a circuit file).

stim.GateTarget.is_z_target

Returns whether or not this is a `stim.target_z` target (e.g. `Z5` in a circuit file).

stim.GateTarget.value

The numeric part of the target. Positive for qubit targets, negative for measurement record targets.

stim.PauliString.__add__(self, rhs: stim.PauliString) -> stim.PauliString

Returns the tensor product of two Pauli strings.

Concatenates the Pauli strings and multiplies their signs.

Args:
    rhs: A second stim.PauliString.

Examples:
    >>> import stim

    >>> stim.PauliString("X") + stim.PauliString("YZ")
    stim.PauliString("+XYZ")

    >>> stim.PauliString("iX") + stim.PauliString("-X")
    stim.PauliString("-iXX")

Returns:
    The tensor product.

stim.PauliString.__eq__(self, arg0: stim.PauliString) -> bool

Determines if two Pauli strings have identical contents.

stim.PauliString.__getitem__(self, index_or_slice: object) -> object

Returns an individual Pauli or Pauli string slice from the pauli string.

Individual Paulis are returned as an int using the encoding 0=I, 1=X, 2=Y, 3=Z.
Slices are returned as a stim.PauliString (always with positive sign).

Examples:
    >>> import stim
    >>> p = stim.PauliString("_XYZ")
    >>> p[2]
    2
    >>> p[-1]
    3
    >>> p[:2]
    stim.PauliString("+_X")
    >>> p[::-1]
    stim.PauliString("+ZYX_")

Args:
    index_or_slice: The index of the pauli to return, or the slice of paulis to return.

Returns:
    0: Identity.
    1: Pauli X.
    2: Pauli Y.
    3: Pauli Z.

stim.PauliString.__iadd__(self, rhs: stim.PauliString) -> stim.PauliString

Performs an inplace tensor product.

Concatenates the given Pauli string onto the receiving string and multiplies their signs.

Args:
    rhs: A second stim.PauliString.

Examples:
    >>> import stim

    >>> p = stim.PauliString("iX")
    >>> alias = p
    >>> p += stim.PauliString("-YY")
    >>> p
    stim.PauliString("-iXYY")
    >>> alias is p
    True

Returns:
    The mutated pauli string.

stim.PauliString.__imul__(self, rhs: object) -> stim.PauliString

Inplace right-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power.

Args:
    rhs: The right hand side of the multiplication. This can be:
        - A stim.PauliString to right-multiply term-by-term into the paulis of the pauli string.
        - A complex unit (1, -1, 1j, -1j) to multiply into the sign of the pauli string.
        - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it).

Examples:
    >>> import stim

    >>> p = stim.PauliString("X")
    >>> p *= 1j
    >>> p
    stim.PauliString("+iX")

    >>> p = stim.PauliString("iXY_")
    >>> p *= 3
    >>> p
    stim.PauliString("-iXY_XY_XY_")

    >>> p = stim.PauliString("X")
    >>> alias = p
    >>> p *= stim.PauliString("Y")
    >>> alias
    stim.PauliString("+iZ")

    >>> p = stim.PauliString("X")
    >>> p *= stim.PauliString("_YY")
    >>> p
    stim.PauliString("+XYY")

Returns:
    The mutated Pauli string.

Raises:
    ValueError: The Pauli strings have different lengths.

stim.PauliString.__init__(*args, **kwargs)

Overloaded function.

1. __init__(self: stim.PauliString, num_qubits: int) -> None

Creates an identity Pauli string over the given number of qubits.

Examples:
    >>> import stim
    >>> p = stim.PauliString(5)
    >>> print(p)
    +_____

Args:
    num_qubits: The number of qubits the Pauli string acts on.


2. __init__(self: stim.PauliString, text: str) -> None

Creates a stim.PauliString from a text string.

The string can optionally start with a sign ('+', '-', 'i', '+i', or '-i').
The rest of the string should be characters from '_IXYZ' where
'_' and 'I' mean identity, 'X' means Pauli X, 'Y' means Pauli Y, and 'Z' means Pauli Z.

Examples:
    >>> import stim
    >>> print(stim.PauliString("YZ"))
    +YZ
    >>> print(stim.PauliString("+IXYZ"))
    +_XYZ
    >>> print(stim.PauliString("-___X_"))
    -___X_
    >>> print(stim.PauliString("iX"))
    +iX

Args:
    text: A text description of the Pauli string's contents, such as "+XXX" or "-_YX".


3. __init__(self: stim.PauliString, copy: stim.PauliString) -> None

Creates a copy of a stim.PauliString.

Examples:
    >>> import stim
    >>> a = stim.PauliString("YZ")
    >>> b = stim.PauliString(a)
    >>> b is a
    False
    >>> b == a
    True

Args:
    copy: The pauli string to make a copy of.


4. __init__(self: stim.PauliString, pauli_indices: List[int]) -> None

Creates a stim.PauliString from a list of integer pauli indices.

The indexing scheme that is used is:
    0 -> I
    1 -> X
    2 -> Y
    3 -> Z

Examples:
    >>> import stim
    >>> stim.PauliString([0, 1, 2, 3, 0, 3])
    stim.PauliString("+_XYZ_Z")

Args:
    pauli_indices: A sequence of integers from 0 to 3 (inclusive) indicating paulis.

stim.PauliString.__len__(self) -> int

Returns the length the pauli string; the number of qubits it operates on.

stim.PauliString.__mul__(self, rhs: object) -> stim.PauliString

Right-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power.

Args:
    rhs: The right hand side of the multiplication. This can be:
        - A stim.PauliString to right-multiply term-by-term with the paulis of the pauli string.
        - A complex unit (1, -1, 1j, -1j) to multiply with the sign of the pauli string.
        - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it).

Examples:
    >>> import stim

    >>> stim.PauliString("X") * 1
    stim.PauliString("+X")
    >>> stim.PauliString("X") * -1
    stim.PauliString("-X")
    >>> stim.PauliString("X") * 1j
    stim.PauliString("+iX")

    >>> stim.PauliString("X") * 2
    stim.PauliString("+XX")
    >>> stim.PauliString("-X") * 2
    stim.PauliString("+XX")
    >>> stim.PauliString("iX") * 2
    stim.PauliString("-XX")
    >>> stim.PauliString("X") * 3
    stim.PauliString("+XXX")
    >>> stim.PauliString("iX") * 3
    stim.PauliString("-iXXX")

    >>> stim.PauliString("X") * stim.PauliString("Y")
    stim.PauliString("+iZ")
    >>> stim.PauliString("X") * stim.PauliString("XX_")
    stim.PauliString("+_X_")
    >>> stim.PauliString("XXXX") * stim.PauliString("_XYZ")
    stim.PauliString("+X_ZY")

Returns:
    The product or tensor power.

Raises:
    TypeError: The right hand side isn't a stim.PauliString, a non-negative integer, or a complex unit (1, -1, 1j, or -1j).

stim.PauliString.__ne__(self, arg0: stim.PauliString) -> bool

Determines if two Pauli strings have non-identical contents.

stim.PauliString.__neg__(self) -> stim.PauliString

Returns the negation of the pauli string.

Examples:
    >>> import stim
    >>> -stim.PauliString("X")
    stim.PauliString("-X")
    >>> -stim.PauliString("-Y")
    stim.PauliString("+Y")
    >>> -stim.PauliString("iZZZ")
    stim.PauliString("-iZZZ")

stim.PauliString.__pos__(self) -> stim.PauliString

Returns a pauli string with the same contents.

Examples:
    >>> import stim
    >>> +stim.PauliString("+X")
    stim.PauliString("+X")
    >>> +stim.PauliString("-YY")
    stim.PauliString("-YY")
    >>> +stim.PauliString("iZZZ")
    stim.PauliString("+iZZZ")

stim.PauliString.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.PauliString`.

stim.PauliString.__rmul__(self, lhs: object) -> stim.PauliString

Left-multiplies the Pauli string by another Pauli string, a complex unit, or a tensor power.

Args:
    rhs: The left hand side of the multiplication. This can be:
        - A stim.PauliString to left-multiply term-by-term into the paulis of the pauli string.
        - A complex unit (1, -1, 1j, -1j) to multiply into the sign of the pauli string.
        - A non-negative integer indicating the tensor power to raise the pauli string to (how many times to repeat it).

Examples:
    >>> import stim

    >>> 1 * stim.PauliString("X")
    stim.PauliString("+X")
    >>> -1 * stim.PauliString("X")
    stim.PauliString("-X")
    >>> 1j * stim.PauliString("X")
    stim.PauliString("+iX")

    >>> 2 * stim.PauliString("X")
    stim.PauliString("+XX")
    >>> 2 * stim.PauliString("-X")
    stim.PauliString("+XX")
    >>> 2 * stim.PauliString("iX")
    stim.PauliString("-XX")
    >>> 3 * stim.PauliString("X")
    stim.PauliString("+XXX")
    >>> 3 * stim.PauliString("iX")
    stim.PauliString("-iXXX")

    >>> stim.PauliString("X") * stim.PauliString("Y")
    stim.PauliString("+iZ")
    >>> stim.PauliString("X") * stim.PauliString("XX_")
    stim.PauliString("+_X_")
    >>> stim.PauliString("XXXX") * stim.PauliString("_XYZ")
    stim.PauliString("+X_ZY")

Returns:
    The product.

Raises:
    ValueError: The scalar phase factor isn't 1, -1, 1j, or -1j.

stim.PauliString.__setitem__(self, index: int, new_pauli: object) -> None

Mutates an entry in the pauli string using the encoding 0=I, 1=X, 2=Y, 3=Z.

Args:
    index: The index of the pauli to overwrite.
    new_pauli: Either a character from '_IXYZ' or an integer from range(4).

Examples:
    >>> import stim
    >>> p = stim.PauliString(4)
    >>> p[2] = 1
    >>> print(p)
    +__X_
    >>> p[0] = 3
    >>> p[1] = 2
    >>> p[3] = 0
    >>> print(p)
    +ZYX_
    >>> p[0] = 'I'
    >>> p[1] = 'X'
    >>> p[2] = 'Y'
    >>> p[3] = 'Z'
    >>> print(p)
    +_XYZ
    >>> p[-1] = 'Y'
    >>> print(p)
    +_XYY

stim.PauliString.__str__(self) -> str

Returns a text description.

stim.PauliString.__truediv__(*args, **kwargs)

Overloaded function.

1. __truediv__(self: stim.PauliString, rhs: complex) -> stim.PauliString

Inplace divides the Pauli string by a complex unit.

Args:
    rhs: The divisor. Can be 1, -1, 1j, or -1j.

Examples:
    >>> import stim

    >>> p = stim.PauliString("X")
    >>> p /= 1j
    >>> p
    stim.PauliString("-iX")

Returns:
    The mutated Pauli string.

Raises:
    ValueError: The divisor isn't 1, -1, 1j, or -1j.


2. __truediv__(self: stim.PauliString, rhs: complex) -> stim.PauliString

Divides the Pauli string by a complex unit.

Args:
    rhs: The divisor. Can be 1, -1, 1j, or -1j.

Examples:
    >>> import stim

    >>> stim.PauliString("X") / 1j
    stim.PauliString("-iX")

Returns:
    The quotient.

Raises:
    ValueError: The divisor isn't 1, -1, 1j, or -1j.

stim.PauliString.commutes(self, other: stim.PauliString) -> bool

Determines if two Pauli strings commute or not.

Two Pauli strings commute if they have an even number of matched
non-equal non-identity Pauli terms. Otherwise they anticommute.

Args:
    other: The other Pauli string.

Examples:
    >>> import stim
    >>> xx = stim.PauliString("XX")
    >>> xx.commutes(stim.PauliString("X_"))
    True
    >>> xx.commutes(stim.PauliString("XX"))
    True
    >>> xx.commutes(stim.PauliString("XY"))
    False
    >>> xx.commutes(stim.PauliString("XZ"))
    False
    >>> xx.commutes(stim.PauliString("ZZ"))
    True
    >>> xx.commutes(stim.PauliString("X_Y__"))
    True
    >>> xx.commutes(stim.PauliString(""))
    True

Returns:
    True if the Pauli strings commute, False if they anti-commute.

stim.PauliString.copy(self) -> stim.PauliString

Returns a copy of the pauli string. An independent pauli string with the same contents.

Examples:
    >>> import stim
    >>> p1 = stim.PauliString.random(2)
    >>> p2 = p1.copy()
    >>> p2 is p1
    False
    >>> p2 == p1
    True

stim.PauliString.extended_product(self, other: stim.PauliString) -> Tuple[complex, stim.PauliString]

[DEPRECATED] Use multiplication (__mul__ or *) instead.

stim.PauliString.random(num_qubits: int, *, allow_imaginary: bool = False) -> stim.PauliString

Samples a uniformly random Hermitian Pauli string over the given number of qubits.

Args:
    num_qubits: The number of qubits the Pauli string should act on.
    allow_imaginary: Defaults to False. If True, the sign of the result may be 1j or -1j
        in addition to +1 or -1. In other words, setting this to True allows the result
        to be non-Hermitian.

Examples:
    >>> import stim
    >>> p = stim.PauliString.random(5)
    >>> len(p)
    5
    >>> p.sign in [-1, +1]
    True

    >>> p2 = stim.PauliString.random(3, allow_imaginary=True)
    >>> len(p2)
    3
    >>> p2.sign in [-1, +1, 1j, -1j]
    True

Returns:
    The sampled Pauli string.

stim.PauliString.sign

The sign of the Pauli string. Can be +1, -1, 1j, or -1j.

Examples:
    >>> import stim
    >>> stim.PauliString("X").sign
    (1+0j)
    >>> stim.PauliString("-X").sign
    (-1+0j)
    >>> stim.PauliString("iX").sign
    1j
    >>> stim.PauliString("-iX").sign
    (-0-1j)

stim.Tableau.__add__(self, rhs: stim.Tableau) -> stim.Tableau

Returns the direct sum (diagonal concatenation) of two Tableaus.

Args:
    rhs: A second stim.Tableau.

Examples:
    >>> import stim

    >>> s = stim.Tableau.from_named_gate("S")
    >>> cz = stim.Tableau.from_named_gate("CZ")
    >>> print(s + cz)
    +-xz-xz-xz-
    | ++ ++ ++
    | YZ __ __
    | __ XZ Z_
    | __ Z_ XZ

Returns:
    The direct sum.

stim.Tableau.__call__(self, pauli_string: stim.PauliString) -> stim.PauliString

Returns the result of conjugating the given PauliString by the Tableau's Clifford operation.

Args:
    pauli_string: The pauli string to conjugate.

Returns:
    The new conjugated pauli string.

Examples:
    >>> import stim
    >>> t = stim.Tableau.from_named_gate("CNOT")
    >>> p = stim.PauliString("XX")
    >>> result = t(p)
    >>> print(result)
    +X_

stim.Tableau.__eq__(self, arg0: stim.Tableau) -> bool

Determines if two tableaus have identical contents.

stim.Tableau.__iadd__(self, rhs: stim.Tableau) -> stim.Tableau

Performs an inplace direct sum (diagonal concatenation).

Args:
    rhs: A second stim.Tableau.

Examples:
    >>> import stim

    >>> s = stim.Tableau.from_named_gate("S")
    >>> cz = stim.Tableau.from_named_gate("CZ")
    >>> alias = s
    >>> s += cz
    >>> alias is s
    True
    >>> print(s)
    +-xz-xz-xz-
    | ++ ++ ++
    | YZ __ __
    | __ XZ Z_
    | __ Z_ XZ

Returns:
    The mutated tableau.

stim.Tableau.__init__(self, num_qubits: int) -> None

Creates an identity tableau over the given number of qubits.

Examples:
    >>> import stim
    >>> t = stim.Tableau(3)
    >>> print(t)
    +-xz-xz-xz-
    | ++ ++ ++
    | XZ __ __
    | __ XZ __
    | __ __ XZ

Args:
    num_qubits: The number of qubits the tableau's operation acts on.

stim.Tableau.__len__(self) -> int

Returns the number of qubits operated on by the tableau.

stim.Tableau.__mul__(self, rhs: stim.Tableau) -> stim.Tableau

Returns the product of two tableaus.

If the tableau T1 represents the Clifford operation with unitary C1,
and the tableau T2 represents the Clifford operation with unitary C2,
then the tableau T1*T2 represents the Clifford operation with unitary C1*C2.

Args:
    rhs: The tableau  on the right hand side of the multiplication.

Examples:
    >>> import stim
    >>> t1 = stim.Tableau.random(4)
    >>> t2 = stim.Tableau.random(4)
    >>> t3 = t2 * t1
    >>> p = stim.PauliString.random(4)
    >>> t3(p) == t2(t1(p))
    True

stim.Tableau.__ne__(self, arg0: stim.Tableau) -> bool

Determines if two tableaus have non-identical contents.

stim.Tableau.__pow__(self, exponent: int) -> stim.Tableau

Raises the tableau to an integer power.

Large powers are reached efficiently using repeated squaring.
Negative powers are reached by inverting the tableau.

Args:
    exponent: The power to raise to. Can be negative, zero, or positive.

Examples:
    >>> import stim
    >>> s = stim.Tableau.from_named_gate("S")
    >>> s**0 == stim.Tableau(1)
    True
    >>> s**1 == s
    True
    >>> s**2 == stim.Tableau.from_named_gate("Z")
    True
    >>> s**-1 == s**3 == stim.Tableau.from_named_gate("S_DAG")
    True
    >>> s**5 == s
    True
    >>> s**(400000000 + 1) == s
    True
    >>> s**(-400000000 + 1) == s
    True

stim.Tableau.__repr__(self) -> str

Returns text that is a valid python expression evaluating to an equivalent `stim.Tableau`.

stim.Tableau.__str__(self) -> str

Returns a text description.

stim.Tableau.append(self, gate: stim.Tableau, targets: List[int]) -> None

Appends an operation's effect into this tableau, mutating this tableau.

Time cost is O(n*m*m) where n=len(self) and m=len(gate).

Args:
    gate: The tableau of the operation being appended into this tableau.
    targets: The qubits being targeted by the gate.

Examples:
    >>> import stim
    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> t = stim.Tableau(2)
    >>> t.append(cnot, [0, 1])
    >>> t.append(cnot, [1, 0])
    >>> t.append(cnot, [0, 1])
    >>> t == stim.Tableau.from_named_gate("SWAP")
    True

stim.Tableau.copy(self) -> stim.Tableau

Returns a copy of the tableau. An independent tableau with the same contents.

Examples:
    >>> import stim
    >>> t1 = stim.Tableau.random(2)
    >>> t2 = t1.copy()
    >>> t2 is t1
    False
    >>> t2 == t1
    True

stim.Tableau.from_conjugated_generators(*, xs: List[stim.PauliString], zs: List[stim.PauliString]) -> stim.Tableau

Creates a tableau from the given outputs for each generator.

Verifies that the tableau is well formed.

Args:
    xs: A List[stim.PauliString] with the results of conjugating X0, X1, etc.
    zs: A List[stim.PauliString] with the results of conjugating Z0, Z1, etc.

Returns:
    The created tableau.

Raises:
    ValueError: The given outputs are malformed. Their lengths are inconsistent,
        or they don't satisfy the required commutation relationships.

Examples:
    >>> import stim
    >>> identity3 = stim.Tableau.from_conjugated_generators(
    ...     xs=[
    ...         stim.PauliString("X__"),
    ...         stim.PauliString("_X_"),
    ...         stim.PauliString("__X"),
    ...     ],
    ...     zs=[
    ...         stim.PauliString("Z__"),
    ...         stim.PauliString("_Z_"),
    ...         stim.PauliString("__Z"),
    ...     ],
    ... )
    >>> identity3 == stim.Tableau(3)
    True

stim.Tableau.from_named_gate(name: str) -> stim.Tableau

Returns the tableau of a named Clifford gate.

Args:
    name: The name of the Clifford gate.

Returns:
    The gate's tableau.

Examples:
    >>> import stim
    >>> print(stim.Tableau.from_named_gate("H"))
    +-xz-
    | ++
    | ZX
    >>> print(stim.Tableau.from_named_gate("CNOT"))
    +-xz-xz-
    | ++ ++
    | XZ _Z
    | X_ XZ
    >>> print(stim.Tableau.from_named_gate("S"))
    +-xz-
    | ++
    | YZ

stim.Tableau.inverse(self, *, unsigned: bool = False) -> stim.Tableau

Computes the inverse of the tableau.

The inverse T^-1 of a tableau T is the unique tableau with the property that T * T^-1 = T^-1 * T = I where
I is the identity tableau.

Args:
    unsigned: Defaults to false. When set to true, skips computing the signs of the output observables and
        instead just set them all to be positive. This is beneficial because computing the signs takes
        O(n^3) time and the rest of the inverse computation is O(n^2) where n is the number of qubits in the
        tableau. So, if you only need the Pauli terms (not the signs), it is significantly cheaper.

Returns:
    The inverse tableau.

Examples:
    >>> import stim

    >>> # Check that the inverse agrees with hard-coded tableaus in the gate data.
    >>> s = stim.Tableau.from_named_gate("S")
    >>> s_dag = stim.Tableau.from_named_gate("S_DAG")
    >>> s.inverse() == s_dag
    True
    >>> z = stim.Tableau.from_named_gate("Z")
    >>> z.inverse() == z
    True

    >>> # Check that multiplying by the inverse produces the identity.
    >>> t = stim.Tableau.random(10)
    >>> t_inv = t.inverse()
    >>> identity = stim.Tableau(10)
    >>> t * t_inv == t_inv * t == identity
    True

    >>> # Check a manual case.
    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-__Z"), stim.PauliString("+XZ_"), stim.PauliString("+_ZZ")],
    ...     zs=[stim.PauliString("-YYY"), stim.PauliString("+Z_Z"), stim.PauliString("-ZYZ")],
    ... )
    >>> print(t.inverse())
    +-xz-xz-xz-
    | -- +- --
    | XX XX YX
    | XZ Z_ X_
    | X_ YX Y_
    >>> print(t.inverse(unsigned=True))
    +-xz-xz-xz-
    | ++ ++ ++
    | XX XX YX
    | XZ Z_ X_
    | X_ YX Y_

stim.Tableau.inverse_x_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString

Returns the result of conjugating an X Pauli generator by the inverse of the tableau.

A faster version of `tableau.inverse(unsigned).x_output(input_index)`.

Args:
    input_index: Identifies the column (the qubit of the X generator) to return from the inverse tableau.
    unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets
        it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other
        parts of the computation take O(n) time where n is the number of qubits in the tableau.

Returns:
    The result of conjugating an X generator by the inverse of the tableau.

Examples:
    >>> import stim

    # Check equivalence with the inverse's x_output.
    >>> t = stim.Tableau.random(4)
    >>> expected = t.inverse().x_output(0)
    >>> t.inverse_x_output(0) == expected
    True
    >>> expected.sign = +1;
    >>> t.inverse_x_output(0, unsigned=True) == expected
    True

stim.Tableau.inverse_x_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's inverse's output pauli string for an input X generator.

A constant-time equivalent for `tableau.inverse().x_output(input_index)[output_index]`.

Args:
    input_index: Identifies the column (the qubit of the input X generator) in the inverse tableau.
    output_index: Identifies the row (the output qubit) in the inverse tableau.

Returns:
    An integer identifying Pauli at the given location in the inverse tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t_inv = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... ).inverse()
    >>> t_inv.inverse_x_output_pauli(0, 0)
    2
    >>> t_inv.inverse_x_output_pauli(0, 1)
    0
    >>> t_inv.inverse_x_output_pauli(1, 0)
    2
    >>> t_inv.inverse_x_output_pauli(1, 1)
    3

stim.Tableau.inverse_y_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString

Returns the result of conjugating a Y Pauli generator by the inverse of the tableau.

A faster version of `tableau.inverse(unsigned).y_output(input_index)`.

Args:
    input_index: Identifies the column (the qubit of the Y generator) to return from the inverse tableau.
    unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets
        it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other
        parts of the computation take O(n) time where n is the number of qubits in the tableau.

Returns:
    The result of conjugating a Y generator by the inverse of the tableau.

Examples:
    >>> import stim

    # Check equivalence with the inverse's y_output.
    >>> t = stim.Tableau.random(4)
    >>> expected = t.inverse().y_output(0)
    >>> t.inverse_y_output(0) == expected
    True
    >>> expected.sign = +1;
    >>> t.inverse_y_output(0, unsigned=True) == expected
    True

stim.Tableau.inverse_y_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's inverse's output pauli string for an input Y generator.

A constant-time equivalent for `tableau.inverse().y_output(input_index)[output_index]`.

Args:
    input_index: Identifies the column (the qubit of the input Y generator) in the inverse tableau.
    output_index: Identifies the row (the output qubit) in the inverse tableau.

Returns:
    An integer identifying Pauli at the given location in the inverse tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t_inv = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... ).inverse()
    >>> t_inv.inverse_y_output_pauli(0, 0)
    1
    >>> t_inv.inverse_y_output_pauli(0, 1)
    2
    >>> t_inv.inverse_y_output_pauli(1, 0)
    0
    >>> t_inv.inverse_y_output_pauli(1, 1)
    2

stim.Tableau.inverse_z_output(self, input_index: int, *, unsigned: bool = False) -> stim.PauliString

Returns the result of conjugating a Z Pauli generator by the inverse of the tableau.

A faster version of `tableau.inverse(unsigned).z_output(input_index)`.

Args:
    input_index: Identifies the column (the qubit of the Z generator) to return from the inverse tableau.
    unsigned: Defaults to false. When set to true, skips computing the result's sign and instead just sets
        it to positive. This is beneficial because computing the sign takes O(n^2) time whereas all other
        parts of the computation take O(n) time where n is the number of qubits in the tableau.

Returns:
    The result of conjugating a Z generator by the inverse of the tableau.

Examples:
    >>> import stim

    >>> import stim

    # Check equivalence with the inverse's z_output.
    >>> t = stim.Tableau.random(4)
    >>> expected = t.inverse().z_output(0)
    >>> t.inverse_z_output(0) == expected
    True
    >>> expected.sign = +1;
    >>> t.inverse_z_output(0, unsigned=True) == expected
    True

stim.Tableau.inverse_z_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's inverse's output pauli string for an input Z generator.

A constant-time equivalent for `tableau.inverse().z_output(input_index)[output_index]`.

Args:
    input_index: Identifies the column (the qubit of the input Z generator) in the inverse tableau.
    output_index: Identifies the row (the output qubit) in the inverse tableau.

Returns:
    An integer identifying Pauli at the given location in the inverse tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t_inv = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... ).inverse()
    >>> t_inv.inverse_z_output_pauli(0, 0)
    3
    >>> t_inv.inverse_z_output_pauli(0, 1)
    2
    >>> t_inv.inverse_z_output_pauli(1, 0)
    2
    >>> t_inv.inverse_z_output_pauli(1, 1)
    1

stim.Tableau.prepend(self, gate: stim.Tableau, targets: List[int]) -> None

Prepends an operation's effect into this tableau, mutating this tableau.

Time cost is O(n*m*m) where n=len(self) and m=len(gate).

Args:
    gate: The tableau of the operation being prepended into this tableau.
    targets: The qubits being targeted by the gate.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> t = stim.Tableau.from_named_gate("H")
    >>> t.prepend(stim.Tableau.from_named_gate("X"), [0])
    >>> t == stim.Tableau.from_named_gate("SQRT_Y_DAG")
    True

stim.Tableau.random(num_qubits: int) -> stim.Tableau

Samples a uniformly random Clifford operation over the given number of qubits and returns its tableau.

Args:
    num_qubits: The number of qubits the tableau should act on.

Returns:
    The sampled tableau.

Examples:
    >>> import stim
    >>> t = stim.Tableau.random(42)

References:
    "Hadamard-free circuits expose the structure of the Clifford group"
    Sergey Bravyi, Dmitri Maslov
    https://arxiv.org/abs/2003.09412

stim.Tableau.then(self, second: stim.Tableau) -> stim.Tableau

Returns the result of composing two tableaus.

If the tableau T1 represents the Clifford operation with unitary C1,
and the tableau T2 represents the Clifford operation with unitary C2,
then the tableau T1.then(T2) represents the Clifford operation with unitary C2*C1.

Args:
    second: The result is equivalent to applying the second tableau after
        the receiving tableau.

Examples:
    >>> import stim
    >>> t1 = stim.Tableau.random(4)
    >>> t2 = stim.Tableau.random(4)
    >>> t3 = t1.then(t2)
    >>> p = stim.PauliString.random(4)
    >>> t3(p) == t2(t1(p))
    True

stim.Tableau.x_output(self, target: int) -> stim.PauliString

Returns the result of conjugating a Pauli X by the tableau's Clifford operation.

Args:
    target: The qubit targeted by the Pauli X operation.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> h.x_output(0)
    stim.PauliString("+Z")

    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> cnot.x_output(0)
    stim.PauliString("+XX")
    >>> cnot.x_output(1)
    stim.PauliString("+_X")

stim.Tableau.x_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's output pauli string for an input X generator.

A constant-time equivalent for `tableau.x_output(input_index)[output_index]`.

Args:
    input_index: Identifies the tableau column (the qubit of the input X generator).
    output_index: Identifies the tableau row (the output qubit).

Returns:
    An integer identifying Pauli at the given location in the tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... )
    >>> t.x_output_pauli(0, 0)
    2
    >>> t.x_output_pauli(0, 1)
    0
    >>> t.x_output_pauli(1, 0)
    2
    >>> t.x_output_pauli(1, 1)
    3

stim.Tableau.y_output(self, target: int) -> stim.PauliString

Returns the result of conjugating a Pauli Y by the tableau's Clifford operation.

Args:
    target: The qubit targeted by the Pauli Y operation.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> h.y_output(0)
    stim.PauliString("-Y")

    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> cnot.y_output(0)
    stim.PauliString("+YX")
    >>> cnot.y_output(1)
    stim.PauliString("+ZY")

stim.Tableau.y_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's output pauli string for an input Y generator.

A constant-time equivalent for `tableau.y_output(input_index)[output_index]`.

Args:
    input_index: Identifies the tableau column (the qubit of the input Y generator).
    output_index: Identifies the tableau row (the output qubit).

Returns:
    An integer identifying Pauli at the given location in the tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... )
    >>> t.y_output_pauli(0, 0)
    1
    >>> t.y_output_pauli(0, 1)
    2
    >>> t.y_output_pauli(1, 0)
    0
    >>> t.y_output_pauli(1, 1)
    2

stim.Tableau.z_output(self, target: int) -> stim.PauliString

Returns the result of conjugating a Pauli Z by the tableau's Clifford operation.

Args:
    target: The qubit targeted by the Pauli Z operation.

Examples:
    >>> import stim
    >>> h = stim.Tableau.from_named_gate("H")
    >>> h.z_output(0)
    stim.PauliString("+X")

    >>> cnot = stim.Tableau.from_named_gate("CNOT")
    >>> cnot.z_output(0)
    stim.PauliString("+Z_")
    >>> cnot.z_output(1)
    stim.PauliString("+ZZ")

stim.Tableau.z_output_pauli(self, input_index: int, output_index: int) -> int

Returns a Pauli term from the tableau's output pauli string for an input Z generator.

A constant-time equivalent for `tableau.z_output(input_index)[output_index]`.

Args:
    input_index: Identifies the tableau column (the qubit of the input Z generator).
    output_index: Identifies the tableau row (the output qubit).

Returns:
    An integer identifying Pauli at the given location in the tableau:

        0: I
        1: X
        2: Y
        3: Z

Examples:
    >>> import stim

    >>> t = stim.Tableau.from_conjugated_generators(
    ...     xs=[stim.PauliString("-Y_"), stim.PauliString("+YZ")],
    ...     zs=[stim.PauliString("-ZY"), stim.PauliString("+YX")],
    ... )
    >>> t.z_output_pauli(0, 0)
    3
    >>> t.z_output_pauli(0, 1)
    2
    >>> t.z_output_pauli(1, 0)
    2
    >>> t.z_output_pauli(1, 1)
    1

stim.TableauSimulator.canonical_stabilizers(self) -> List[stim.PauliString]

Returns a list of the stabilizers of the simulator's current state in a standard form.

Two simulators have the same canonical stabilizers if and only if their current quantum state is equal
(and tracking the same number of qubits).

The canonical form is computed as follows:

    1. Get a list of stabilizers using the `z_output`s of `simulator.current_inverse_tableau()**-1`.
    2. Perform Gaussian elimination on each generator g (ordered X0, Z0, X1, Z1, X2, Z2, etc).
        2a) Pick any stabilizer that uses the generator g. If there are none, go to the next g.
        2b) Multiply that stabilizer into all other stabilizers that use the generator g.
        2c) Swap that stabilizer with the stabilizer at position `next_output` then increment `next_output`.

Returns:
    A List[stim.PauliString] of the simulator's state's stabilizers.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.cnot(0, 1)
    >>> s.x(2)
    >>> s.canonical_stabilizers()
    [stim.PauliString("+XX_"), stim.PauliString("+ZZ_"), stim.PauliString("-__Z")]

    >>> # Scramble the stabilizers then check that the canonical form is unchanged.
    >>> s.set_inverse_tableau(s.current_inverse_tableau()**-1)
    >>> s.cnot(0, 1)
    >>> s.cz(0, 2)
    >>> s.s(0, 2)
    >>> s.cy(2, 1)
    >>> s.set_inverse_tableau(s.current_inverse_tableau()**-1)
    >>> s.canonical_stabilizers()
    [stim.PauliString("+XX_"), stim.PauliString("+ZZ_"), stim.PauliString("-__Z")]

stim.TableauSimulator.cnot(self, *args) -> None

Applies a controlled X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.copy(self) -> stim.TableauSimulator

Returns a copy of the simulator. A simulator with the same internal state.

Examples:
    >>> import stim

    >>> s1 = stim.TableauSimulator()
    >>> s1.set_inverse_tableau(stim.Tableau.random(1))
    >>> s2 = s1.copy()
    >>> s2 is s1
    False
    >>> s2.current_inverse_tableau() == s1.current_inverse_tableau()
    True

    >>> s = stim.TableauSimulator()
    >>> def brute_force_post_select(qubit, desired_result):
    ...     global s
    ...     while True:
    ...         copy = s.copy()
    ...         if copy.measure(qubit) == desired_result:
    ...             s = copy
    ...             break
    >>> s.h(0)
    >>> brute_force_post_select(qubit=0, desired_result=True)
    >>> s.measure(0)
    True

stim.TableauSimulator.current_inverse_tableau(self) -> stim.Tableau

Returns a copy of the internal state of the simulator as a stim.Tableau.

Returns:
    A stim.Tableau copy of the simulator's state.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.current_inverse_tableau()
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+Z"),
        ],
        zs=[
            stim.PauliString("+X"),
        ],
    )
    >>> s.cnot(0, 1)
    >>> s.current_inverse_tableau()
    stim.Tableau.from_conjugated_generators(
        xs=[
            stim.PauliString("+ZX"),
            stim.PauliString("+_X"),
        ],
        zs=[
            stim.PauliString("+X_"),
            stim.PauliString("+XZ"),
        ],
    )

stim.TableauSimulator.current_measurement_record(self) -> List[bool]

Returns a copy of the record of all measurements performed by the simulator.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.current_measurement_record()
    []
    >>> s.measure(0)
    False
    >>> s.x(0)
    >>> s.measure(0)
    True
    >>> s.current_measurement_record()
    [False, True]
    >>> s.do(stim.Circuit("M 0"))
    >>> s.current_measurement_record()
    [False, True, True]

Returns:
    A list of booleans containing the result of every measurement performed by the simulator so far.

stim.TableauSimulator.cy(self, *args) -> None

Applies a controlled Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.cz(self, *args) -> None

Applies a controlled Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.do(*args, **kwargs)

Overloaded function.

1. do(self: stim.TableauSimulator, circuit: stim.Circuit) -> None

Applies all the operations in the given stim.Circuit to the simulator's state.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.do(stim.Circuit('''
    ...     X 0
    ...     M 0
    ... '''))
    >>> s.current_measurement_record()
    [True]

Args:
    circuit: A stim.Circuit containing operations to apply.


2. do(self: stim.TableauSimulator, pauli_string: stim.PauliString) -> None

Applies all the Pauli operations in the given stim.PauliString to the simulator's state.

The Pauli at offset k is applied to the qubit with index k.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.do(stim.PauliString("IXYZ"))
    >>> s.measure_many(0, 1, 2, 3)
    [False, True, True, False]

Args:
    pauli_string: A stim.PauliString containing Pauli operations to apply.

stim.TableauSimulator.h(self, *args) -> None

Applies a Hadamard gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.h_xy(self, *args) -> None

Applies a variant of the Hadamard gate that swaps the X and Y axes to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.h_yz(self, *args) -> None

Applies a variant of the Hadamard gate that swaps the Y and Z axes to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.iswap(self, *args) -> None

Applies an ISWAP gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.iswap_dag(self, *args) -> None

Applies an ISWAP_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.measure(self, target: int) -> bool

Measures a single qubit.

Unlike the other methods on TableauSimulator, this one does not broadcast
over multiple targets. This is to avoid returning a list, which would
create a pitfall where typing `if sim.measure(qubit)` would be a bug.

To measure multiple qubits, use `TableauSimulator.measure_many`.

Args:
    target: The index of the qubit to measure.

Returns:
    The measurement result as a bool.

stim.TableauSimulator.measure_kickback(self, target: int) -> tuple

Measures a qubit and returns the result as well as its Pauli kickback (if any).

The "Pauli kickback" of a stabilizer circuit measurement is a set of Pauli operations that
flip the post-measurement system state between the two possible post-measurement states.
For example, consider measuring one of the qubits in the state |00>+|11> in the Z basis.
If the measurement result is False, then the system projects into the state |00>.
If the measurement result is True, then the system projects into the state |11>.
Applying a Pauli X operation to both qubits flips between |00> and |11>.
Therefore the Pauli kickback of the measurement is `stim.PauliString("XX")`.
Note that there are often many possible equivalent Pauli kickbacks. For example,
if in the previous example there was a third qubit in the |0> state, then both
`stim.PauliString("XX_")` and `stim.PauliString("XXZ")` are valid kickbacks.

Measurements with determinist results don't have a Pauli kickback.

Args:
    target: The index of the qubit to measure.

Returns:
    A (result, kickback) tuple.
    The result is a bool containing the measurement's output.
    The kickback is either None (meaning the measurement was deterministic) or a stim.PauliString
    (meaning the measurement was random, and the operations in the Pauli string flip between the
    two possible post-measurement states).

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()

    >>> s.measure_kickback(0)
    (False, None)

    >>> s.h(0)
    >>> s.measure_kickback(0)[1]
    stim.PauliString("+X")

    >>> def pseudo_post_select(qubit, desired_result):
    ...     m, kick = s.measure_kickback(qubit)
    ...     if m != desired_result:
    ...         if kick is None:
    ...             raise ValueError("Deterministic measurement differed from desired result.")
    ...         s.do(kick)
    >>> s = stim.TableauSimulator()
    >>> s.h(0)
    >>> s.cnot(0, 1)
    >>> s.cnot(0, 2)
    >>> pseudo_post_select(qubit=2, desired_result=True)
    >>> s.measure_many(0, 1, 2)
    [True, True, True]

stim.TableauSimulator.measure_many(self, *args) -> List[bool]

Measures multiple qubits.

Args:
    *targets: The indices of the qubits to measure.

Returns:
    The measurement results as a list of bools.

stim.TableauSimulator.peek_bloch(self, target: int) -> stim.PauliString

Returns the current bloch vector of the qubit, represented as a stim.PauliString.

This is a non-physical operation. It reports information about the qubit without disturbing it.

Args:
    target: The qubit to peek at.

Returns:
    stim.PauliString("I"): The qubit is entangled. Its bloch vector is x=y=z=0.
    stim.PauliString("+Z"): The qubit is in the |0> state. Its bloch vector is z=+1, x=y=0.
    stim.PauliString("-Z"): The qubit is in the |1> state. Its bloch vector is z=-1, x=y=0.
    stim.PauliString("+Y"): The qubit is in the |i> state. Its bloch vector is y=+1, x=z=0.
    stim.PauliString("-Y"): The qubit is in the |-i> state. Its bloch vector is y=-1, x=z=0.
    stim.PauliString("+X"): The qubit is in the |+> state. Its bloch vector is x=+1, y=z=0.
    stim.PauliString("-X"): The qubit is in the |-> state. Its bloch vector is x=-1, y=z=0.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> s.peek_bloch(0)
    stim.PauliString("+Z")
    >>> s.x(0)
    >>> s.peek_bloch(0)
    stim.PauliString("-Z")
    >>> s.h(0)
    >>> s.peek_bloch(0)
    stim.PauliString("-X")
    >>> s.sqrt_x(1)
    >>> s.peek_bloch(1)
    stim.PauliString("-Y")
    >>> s.cz(0, 1)
    >>> s.peek_bloch(0)
    stim.PauliString("+_")

stim.TableauSimulator.reset(self, *args) -> None

Resets qubits to zero (e.g. by swapping them for zero'd qubit from the environment).

Args:
    *targets: The indices of the qubits to reset.

stim.TableauSimulator.s(self, *args) -> None

Applies a SQRT_Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.s_dag(self, *args) -> None

Applies a SQRT_Z_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.set_inverse_tableau(self, arg0: stim.Tableau) -> None

Overwrites the simulator's internal state with a copy of the given inverse tableau.

The inverse tableau specifies how Pauli product observables of qubits at the current time transform
into equivalent Pauli product observables at the beginning of time, when all qubits were in the
|0> state. For example, if the Z observable on qubit 5 maps to a product of Z observables at the
start of time then a Z basis measurement on qubit 5 will be deterministic and equal to the sign
of the product. Whereas if it mapped to a product of observables including an X or a Y then the Z
basis measurement would be random.

Any qubits not within the length of the tableau are implicitly in the |0> state.

Args:
    new_inverse_tableau: The tableau to overwrite the internal state with.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> t = stim.Tableau.random(4)
    >>> s.set_inverse_tableau(t)
    >>> s.current_inverse_tableau() == t
    True

stim.TableauSimulator.set_num_qubits(self, arg0: int) -> None

Forces the simulator's internal state to track exactly the qubits whose indices are in range(new_num_qubits).

Note that untracked qubits are always assumed to be in the |0> state. Therefore, calling this method
will effectively force any qubit whose index is outside range(new_num_qubits) to be reset to |0>.

Note that this method does not prevent future operations from implicitly expanding the size of the
tracked state (e.g. setting the number of qubits to 5 will not prevent a Hadamard from then being
applied to qubit 100, increasing the number of qubits to 101).

Args:
    new_num_qubits: The length of the range of qubits the internal simulator should be tracking.

Examples:
    >>> import stim
    >>> s = stim.TableauSimulator()
    >>> len(s.current_inverse_tableau())
    0

    >>> s.set_num_qubits(5)
    >>> len(s.current_inverse_tableau())
    5

    >>> s.x(0, 1, 2, 3)
    >>> s.set_num_qubits(2)
    >>> s.measure_many(0, 1, 2, 3)
    [True, True, False, False]

stim.TableauSimulator.sqrt_x(self, *args) -> None

Applies a SQRT_X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.sqrt_x_dag(self, *args) -> None

Applies a SQRT_X_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.sqrt_y(self, *args) -> None

Applies a SQRT_Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.sqrt_y_dag(self, *args) -> None

Applies a SQRT_Y_DAG gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.state_vector(self) -> numpy.ndarray[numpy.float32]

Returns a wavefunction that satisfies the stabilizers of the simulator's current state.

This function takes O(n * 2**n) time and O(2**n) space, where n is the number of qubits. The computation is
done by initialization a random state vector and iteratively projecting it into the +1 eigenspace of each
stabilizer of the state. The global phase of the result is arbitrary (and will vary from call to call).

The result is in little endian order. The amplitude at offset b_0 + b_1*2 + b_2*4 + ... + b_{n-1}*2^{n-1} is
the amplitude for the computational basis state where the qubit with index 0 is storing the bit b_0, the
qubit with index 1 is storing the bit b_1, etc.

Returns:
    A `numpy.ndarray[numpy.complex64]` of computational basis amplitudes in little endian order.

Examples:
    >>> import stim
    >>> import numpy as np

    >>> # Check that the qubit-to-amplitude-index ordering is little-endian.
    >>> s = stim.TableauSimulator()
    >>> s.x(1)
    >>> s.x(4)
    >>> vector = s.state_vector()
    >>> np.abs(vector[0b_10010]).round(2)
    1.0
    >>> tensor = vector.reshape((2, 2, 2, 2, 2))
    >>> np.abs(tensor[1, 0, 0, 1, 0]).round(2)
    1.0

stim.TableauSimulator.swap(self, *args) -> None

Applies a swap gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.x(self, *args) -> None

Applies a Pauli X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.xcx(self, *args) -> None

Applies an X-controlled X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.xcy(self, *args) -> None

Applies an X-controlled Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.xcz(self, *args) -> None

Applies an X-controlled Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.y(self, *args) -> None

Applies a Pauli Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.

stim.TableauSimulator.ycx(self, *args) -> None

Applies a Y-controlled X gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.ycy(self, *args) -> None

Applies a Y-controlled Y gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.ycz(self, *args) -> None

Applies a Y-controlled Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
        Applies the gate to the first two targets, then the next two targets, and so forth.
        There must be an even number of targets.

stim.TableauSimulator.z(self, *args) -> None

Applies a Pauli Z gate to the simulator's state.

Args:
    *targets: The indices of the qubits to target with the gate.
Clone this wiki locally