Skip to content

quangr/ICSDICE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

This is the code for the paper "Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation" published at ICML 2024. The implementation is based on the code from Cleanrl and jax-rl.

Setup Experimental Environments

You may run the following command to install dependencies:

pip install -r requirements.txt
pip install -U "jax[cuda]==0.4.23" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install git+https://github.com/quangr/dejax.git

Then you can download the dataset and put under the ./dataset.

Point Maze

to run Point Maze compare: jupyter nbconvert --to notebook --execute --inplace icrl/maze/exp/train.ipynb --ExecutePreprocessor.timeout=-1

Grid-World

To run Grid-World env with our method:

jupyter nbconvert --to notebook --execute --inplace icrl/grid_world/ICSDICE.ipynb --ExecutePreprocessor.timeout=-1

To run Grid-World env with RECOIL-V:

python icrl/grid_world/recoil-V.py

Mujoco

To run mujoco env with our method:

python icrl/benchmark/ICSDICE.py --seed 1 --alpha=0.0001 --total-timesteps=1000000 --debug=False --update-period=100000 --beta=0.5 --env-id=Ant_ls --cost-l2=0.0005 --cost-limit=0.9 --expert-ratio 1.0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published