Skip to content

Commit

Permalink
[lang] Add spmv and sparse linear solver using ndarray as vector (tai…
Browse files Browse the repository at this point in the history
…chi-dev#6651)

Issue: taichi-dev#2906 

Previously, ndarray cann't be used as a vector on CPU backend in spmv
and sparse linear solve operations. In this PR, the ndarray is
[mapped](https://eigen.tuxfamily.org/dox/classEigen_1_1Map.html) as
Eigen's vector, and then it's used to do math computation.

In addition, the implicit mass spring example is modified to use
ndarrays. It enables us to run this example on both the CPU and GPU
backend.
  • Loading branch information
FantasyVR authored and quadpixels committed May 13, 2023
1 parent 83210ab commit 3fd67ca
Show file tree
Hide file tree
Showing 8 changed files with 163 additions and 9 deletions.
26 changes: 23 additions & 3 deletions python/taichi/examples/simulation/implicit_mass_spring.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,9 +179,29 @@ def update(self, h):

A = self.M - h * D - h**2 * K

vel = self.vel.to_numpy().reshape(2 * self.NV)
force = self.force.to_numpy().reshape(2 * self.NV)
b = (force + h * K @ vel) * h
vel = ti.ndarray(ti.f32, 2 * self.NV)
force = ti.ndarray(ti.f32, 2 * self.NV)

@ti.kernel
def copy_to(des: ti.types.ndarray(), source: ti.template()):
for i in range(self.NV):
des[2 * i] = source[i][0]
des[2 * i + 1] = source[i][1]

copy_to(vel, self.vel)
copy_to(force, self.force)

@ti.kernel
def compute_b(b: ti.types.ndarray(), f: ti.types.ndarray(),
Kv: ti.types.ndarray(), h: ti.f32):
for i in range(2 * self.NV):
b[i] = (f[i] + Kv[i] * h) * h

# b = (force + h * K @ vel) * h
b = ti.ndarray(ti.f32, 2 * self.NV)
Kv = K @ vel
compute_b(b, force, Kv, h)

# Sparse solver
solver = ti.linalg.SparseSolver(solver_type="LDLT")
solver.analyze_pattern(A)
Expand Down
32 changes: 31 additions & 1 deletion taichi/program/sparse_matrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,11 @@
} \
}

#define INSTANTIATE_SPMV(type, storage) \
template void \
EigenSparseMatrix<Eigen::SparseMatrix<type, Eigen::storage>>::spmv( \
Program *prog, const Ndarray &x, const Ndarray &y);

namespace {
using Pair = std::pair<std::string, std::string>;
struct key_hash {
Expand Down Expand Up @@ -226,6 +231,31 @@ void EigenSparseMatrix<EigenMatrix>::build_triplets(void *triplets_adr) {
}
}

template <class EigenMatrix>
void EigenSparseMatrix<EigenMatrix>::spmv(Program *prog,
const Ndarray &x,
const Ndarray &y) {
size_t dX = prog->get_ndarray_data_ptr_as_int(&x);
size_t dY = prog->get_ndarray_data_ptr_as_int(&y);
std::string sdtype = taichi::lang::data_type_name(dtype_);
if (sdtype == "f32") {
Eigen::Map<Eigen::VectorXf>((float *)dY, cols_) =
matrix_.template cast<float>() *
Eigen::Map<Eigen::VectorXf>((float *)dX, cols_);
} else if (sdtype == "f64") {
Eigen::Map<Eigen::VectorXd>((double *)dY, cols_) =
matrix_.template cast<double>() *
Eigen::Map<Eigen::VectorXd>((double *)dX, cols_);
} else {
TI_ERROR("Unsupported sparse matrix data type {}!", sdtype);
}
}

INSTANTIATE_SPMV(float32, ColMajor)
INSTANTIATE_SPMV(float32, RowMajor)
INSTANTIATE_SPMV(float64, ColMajor)
INSTANTIATE_SPMV(float64, RowMajor)

std::unique_ptr<SparseMatrix> make_sparse_matrix(
int rows,
int cols,
Expand Down Expand Up @@ -652,7 +682,7 @@ std::unique_ptr<SparseMatrix> CuSparseMatrix::transpose() const {
#endif
}

void CuSparseMatrix::spmv(Program *prog, const Ndarray &x, Ndarray &y) {
void CuSparseMatrix::spmv(Program *prog, const Ndarray &x, const Ndarray &y) {
#if defined(TI_WITH_CUDA)
size_t dX = prog->get_ndarray_data_ptr_as_int(&x);
size_t dY = prog->get_ndarray_data_ptr_as_int(&y);
Expand Down
6 changes: 4 additions & 2 deletions taichi/program/sparse_matrix.h
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ class SparseMatrix {
return nullptr;
}

inline DataType get_data_type() {
inline const DataType get_data_type() const {
return dtype_;
}

Expand Down Expand Up @@ -197,6 +197,8 @@ class EigenSparseMatrix : public SparseMatrix {
return matrix_ * b;
}

void spmv(Program *prog, const Ndarray &x, const Ndarray &y);

private:
EigenMatrix matrix_;
};
Expand Down Expand Up @@ -265,7 +267,7 @@ class CuSparseMatrix : public SparseMatrix {
void *coo_values_ptr,
int nnz) override;

void spmv(Program *prog, const Ndarray &x, Ndarray &y);
void spmv(Program *prog, const Ndarray &x, const Ndarray &y);

const void *get_matrix() const override {
return &matrix_;
Expand Down
31 changes: 31 additions & 0 deletions taichi/program/sparse_solver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,14 @@
} \
}

#define INSTANTIATE_SOLVER(dt, type, order) \
using dt##type##order = \
Eigen::Simplicial##type<Eigen::SparseMatrix<dt>, Eigen::Lower, \
Eigen::order##Ordering<int>>; \
template void \
EigenSparseSolver<dt##type##order, Eigen::SparseMatrix<dt>>::solve_rf( \
Program *prog, const SparseMatrix &sm, const Ndarray &b, Ndarray &x);

using Triplets = std::tuple<std::string, std::string, std::string>;
namespace {
struct key_hash {
Expand All @@ -34,6 +42,9 @@ namespace taichi::lang {
template <class EigenSolver, class EigenMatrix>
bool EigenSparseSolver<EigenSolver, EigenMatrix>::compute(
const SparseMatrix &sm) {
if (!is_initialized_) {
SparseSolver::init_solver(sm.num_rows(), sm.num_cols(), sm.get_data_type());
}
GET_EM(sm);
solver_.compute(*mat);
if (solver_.info() != Eigen::Success) {
Expand All @@ -44,6 +55,9 @@ bool EigenSparseSolver<EigenSolver, EigenMatrix>::compute(
template <class EigenSolver, class EigenMatrix>
void EigenSparseSolver<EigenSolver, EigenMatrix>::analyze_pattern(
const SparseMatrix &sm) {
if (!is_initialized_) {
SparseSolver::init_solver(sm.num_rows(), sm.num_cols(), sm.get_data_type());
}
GET_EM(sm);
solver_.analyzePattern(*mat);
}
Expand All @@ -66,6 +80,23 @@ bool EigenSparseSolver<EigenSolver, EigenMatrix>::info() {
return solver_.info() == Eigen::Success;
}

template <class EigenSolver, class EigenMatrix>
void EigenSparseSolver<EigenSolver, EigenMatrix>::solve_rf(
Program *prog,
const SparseMatrix &sm,
const Ndarray &b,
Ndarray &x) {
size_t db = prog->get_ndarray_data_ptr_as_int(&b);
size_t dX = prog->get_ndarray_data_ptr_as_int(&x);
Eigen::Map<Eigen::VectorXf>((float *)dX, rows_) =
solver_.solve(Eigen::Map<Eigen::VectorXf>((float *)db, cols_));
}

INSTANTIATE_SOLVER(float32, LLT, COLAMD)
INSTANTIATE_SOLVER(float32, LDLT, COLAMD)
INSTANTIATE_SOLVER(float32, LLT, AMD)
INSTANTIATE_SOLVER(float32, LDLT, AMD)

CuSparseSolver::CuSparseSolver() {
#if defined(TI_WITH_CUDA)
if (!CUSPARSEDriver::get_instance().is_loaded()) {
Expand Down
15 changes: 12 additions & 3 deletions taichi/program/sparse_solver.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,19 @@
namespace taichi::lang {

class SparseSolver {
protected:
int rows_{0};
int cols_{0};
DataType dtype_{PrimitiveType::f32};
bool is_initialized_{false};

public:
virtual ~SparseSolver() = default;
void init_solver(const int rows, const int cols, const DataType dtype) {
rows_ = rows;
cols_ = cols;
dtype_ = dtype;
}
virtual bool compute(const SparseMatrix &sm) = 0;
virtual void analyze_pattern(const SparseMatrix &sm) = 0;
virtual void factorize(const SparseMatrix &sm) = 0;
Expand Down Expand Up @@ -46,9 +57,7 @@ class EigenSparseSolver : public SparseSolver {
void solve_rf(Program *prog,
const SparseMatrix &sm,
const Ndarray &b,
Ndarray &x) override {
TI_NOT_IMPLEMENTED;
};
Ndarray &x) override;

bool info() override;
};
Expand Down
1 change: 1 addition & 0 deletions taichi/python/export_lang.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1219,6 +1219,7 @@ void export_lang(py::module &m) {
.def(float##TYPE() * py::self) \
.def(py::self *py::self) \
.def("matmul", &EigenSparseMatrix<STORAGE##TYPE##EigenMatrix>::matmul) \
.def("spmv", &EigenSparseMatrix<STORAGE##TYPE##EigenMatrix>::spmv) \
.def("transpose", \
&EigenSparseMatrix<STORAGE##TYPE##EigenMatrix>::transpose) \
.def("get_element", \
Expand Down
33 changes: 33 additions & 0 deletions tests/python/test_sparse_linear_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,39 @@ def fill(Abuilder: ti.types.sparse_matrix_builder(),
assert x[i] == test_utils.approx(res[i], rel=1.0)


@pytest.mark.parametrize("dtype", [ti.f32])
@pytest.mark.parametrize("solver_type", ["LLT", "LDLT", "LU"])
@pytest.mark.parametrize("ordering", ["AMD", "COLAMD"])
@test_utils.test(arch=ti.cpu)
def test_sparse_solver_ndarray_vector(dtype, solver_type, ordering):
n = 10
A = np.random.rand(n, n)
A_psd = np.dot(A, A.transpose())
Abuilder = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=300)
b = ti.ndarray(ti.f32, shape=n)

@ti.kernel
def fill(Abuilder: ti.types.sparse_matrix_builder(),
InputArray: ti.types.ndarray(), b: ti.types.ndarray()):
for i, j in ti.ndrange(n, n):
Abuilder[i, j] += InputArray[i, j]
for i in range(n):
b[i] = i + 1

fill(Abuilder, A_psd, b)
A = Abuilder.build()
solver = ti.linalg.SparseSolver(dtype=dtype,
solver_type=solver_type,
ordering=ordering)
solver.analyze_pattern(A)
solver.factorize(A)
x = solver.solve(b)

res = np.linalg.solve(A_psd, b.to_numpy())
for i in range(n):
assert x[i] == test_utils.approx(res[i], rel=1.0)


@test_utils.test(arch=ti.cuda)
def test_gpu_sparse_solver():
from scipy.sparse import coo_matrix
Expand Down
28 changes: 28 additions & 0 deletions tests/python/test_sparse_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,6 +376,34 @@ def fill(Abuilder: ti.types.sparse_matrix_builder(),
assert C[i, j] == GT[i][j]


@pytest.mark.parametrize('dtype, storage_format', [(ti.f32, 'col_major'),
(ti.f32, 'row_major'),
(ti.f64, 'col_major'),
(ti.f64, 'row_major')])
@test_utils.test(arch=ti.cpu)
def test_sparse_matrix_ndarray_vector_multiplication(dtype, storage_format):
n = 2
Abuilder = ti.linalg.SparseMatrixBuilder(n,
n,
max_num_triplets=100,
dtype=dtype,
storage_format=storage_format)
x = ti.ndarray(dtype, n)

@ti.kernel
def fill(Abuilder: ti.types.sparse_matrix_builder()):
for i, j in ti.ndrange(n, n):
Abuilder[i, j] += i + j

fill(Abuilder)
x.fill(1.0)
A = Abuilder.build()
res = A @ x
res_n = res.to_numpy()
assert res_n[0] == 1.0
assert res_n[1] == 3.0


@test_utils.test(arch=ti.cuda)
def test_gpu_sparse_matrix():
import numpy as np
Expand Down

0 comments on commit 3fd67ca

Please sign in to comment.