Qua-Qsim, short for QUA Quantum Simulator, is a versatile tool that compiles QUA programs into hardware-agnostic pulse languages and simulates them on a quantum system. QUA programs are specifically designed for the Quantum Orchestration Platform (QOP) by Quantum Machines, which is used to control quantum systems. With Qua-Qsim, you can simulate these programs without the need for a physical quantum computer, providing users with valuable insights and intuition about QUA and quantum computing in general.
Qua-Qsim currently features a compiler backend for Qiskit Pulse, allowing many QUA programs to be simulated using qiskit-dynamics. At present, we support fixed-frequency transmon qubits, and are actively working to expand support to include more qubit types and pulse languages. This ensures a broad range of applications and enhances the flexibility and utility of Qua-Qsim for various quantum computing projects.
To start using Qua-Qsim, simply install it via pip:
pip install git+http://github.com/qua-platform/qua-qsim.git
In this example, we simulate simultaneous, two-qubit Rabi oscillations by performing an amplitude sweep on a simulated backend. Rabi oscillations represent the coherent oscillation of a qubit's state under an external driving field. This example guides you through configuring a QUA program, defining necessary parameters, and running the simulation to observe the oscillations.
Create a QUA configuration that defines the hardware setup, including qubit parameters, control signals, and readout settings. More information can be found at QUA Configuration. Below is an example configuration:
Example QUA config
from qualang_tools.units import unit
u = unit(coerce_to_integer=True)
x90_q1_amp = 0.08
x90_q2_amp = 0.068
x90_len = 260 // 4
qubit_1_IF = 50 * u.MHz
qubit_1_LO = 4860000000 - qubit_1_IF
qubit_2_IF = 60 * u.MHz
qubit_2_LO = 4970000000 - qubit_2_IF
resonator_1_LO = 5.5 * u.GHz
resonator_1_IF = 60 * u.MHz
resonator_2_LO = 5.5 * u.GHz
resonator_2_IF = 60 * u.MHz
readout_len = 5000
readout_amp = 0.2
time_of_flight = 24
config = {
"version": 1,
"controllers": {
"con1": {
"analog_outputs": {
1: {"offset": 0.0}, # I resonator 1
2: {"offset": 0.0}, # Q resonator 1
3: {"offset": 0.0}, # I resonator 2
4: {"offset": 0.0}, # Q resonator 2
5: {"offset": 0.0}, # I qubit 1
6: {"offset": 0.0}, # Q qubit 1
7: {"offset": 0.0}, # I qubit 2
8: {"offset": 0.0}, # Q qubit 2
},
"digital_outputs": {},
"analog_inputs": {
1: {"offset": 0.0, "gain_db": 0}, # I from down-conversion
2: {"offset": 0.0, "gain_db": 0}, # Q from down-conversion
},
},
},
"elements": {
"qubit_1": {
"RF_inputs": {"port": ("octave1", 3)},
"intermediate_frequency": qubit_1_IF,
"operations": {
"x90": "x90_q1_pulse",
"y90": "y90_q1_pulse",
},
},
"qubit_1t2": {
"RF_inputs": {"port": ("octave1", 3)},
"intermediate_frequency": qubit_2_IF,
"operations": {
"x90": "x90_pulse",
},
},
"qubit_2": {
"RF_inputs": {"port": ("octave1", 4)},
"intermediate_frequency": qubit_2_IF,
"operations": {
"x90": "x90_q2_pulse",
},
},
"resonator_1": {
"RF_inputs": {"port": ("octave1", 1)},
"RF_outputs": {"port": ("octave1", 1)},
"intermediate_frequency": resonator_1_IF,
"operations": {
"readout": "readout_pulse",
},
"time_of_flight": time_of_flight,
"smearing": 0,
},
"resonator_2": {
"RF_inputs": {"port": ("octave1", 2)},
"RF_outputs": {"port": ("octave1", 1)},
"intermediate_frequency": resonator_2_IF,
"operations": {
"readout": "readout_pulse",
},
"time_of_flight": time_of_flight,
"smearing": 0,
},
},
"octaves": {
"octave1": {
"RF_outputs": {
1: {
"LO_frequency": resonator_1_LO,
"LO_source": "internal",
"output_mode": "always_on",
"gain": 0,
},
2: {
"LO_frequency": resonator_2_LO,
"LO_source": "internal",
"output_mode": "always_on",
"gain": 0,
},
3: {
"LO_frequency": qubit_1_LO,
"LO_source": "internal",
"output_mode": "always_on",
"gain": 0,
},
4: {
"LO_frequency": qubit_2_LO,
"LO_source": "internal",
"output_mode": "always_on",
"gain": 0,
},
},
"RF_inputs": {
1: {
"LO_frequency": resonator_1_LO,
"LO_source": "internal",
},
},
"connectivity": "con1",
}
},
"pulses": {
"x90_q1_pulse": {
"operation": "control",
"length": x90_len,
"waveforms": {
"I": "x90_q1_I_wf",
"Q": "x90_q1_Q_wf",
},
},
"y90_q1_pulse": {
"operation": "control",
"length": x90_len,
"waveforms": {
"I": "y90_q1_I_wf",
"Q": "y90_q1_Q_wf",
},
},
"x90_q2_pulse": {
"operation": "control",
"length": x90_len,
"waveforms": {
"I": "x90_q2_I_wf",
"Q": "x90_q2_Q_wf",
},
},
"y90_q2_pulse": {
"operation": "control",
"length": x90_len,
"waveforms": {
"I": "y90_q2_I_wf",
"Q": "y90_q2_Q_wf",
},
},
"readout_pulse": {
"operation": "measurement",
"length": readout_len,
"waveforms": {
"I": "readout_wf",
"Q": "zero_wf",
},
"integration_weights": {
"cos": "cosine_weights",
"sin": "sine_weights",
"minus_sin": "minus_sine_weights",
},
"digital_marker": "ON",
},
},
"waveforms": {
"zero_wf": {"type": "constant", "sample": 0.0},
# q1
"x90_q1_I_wf": {"type": "constant", "sample": x90_q1_amp},
"x90_q1_Q_wf": {"type": "constant", "sample": 0.},
"y90_q1_I_wf": {"type": "constant", "sample": 0.},
"y90_q1_Q_wf": {"type": "constant", "sample": x90_q1_amp},
# q2
"x90_q2_I_wf": {"type": "constant", "sample": x90_q2_amp},
"x90_q2_Q_wf": {"type": "constant", "sample": 0.},
"y90_q2_I_wf": {"type": "constant", "sample": 0.},
"y90_q2_Q_wf": {"type": "constant", "sample": x90_q2_amp},
"readout_wf": {"type": "constant", "sample": readout_amp},
},
"digital_waveforms": {
"ON": {"samples": [(1, 0)]},
},
}
Next, define the parameters for your simulated quantum system. These include the physical characteristics of the qubits and their interactions within the simulation environment. Below is an example:
from quaqsim.architectures.transmon_pair import TransmonPair
from quaqsim.architectures import TransmonSettings
from quaqsim.architectures.transmon_pair_settings import TransmonPairSettings
settings = TransmonPairSettings(
TransmonSettings(
resonant_frequency=4860000000.0,
anharmonicity=-320000000.0,
rabi_frequency=0.22e9
),
TransmonSettings(
resonant_frequency=4970000000.0,
anharmonicity=-320000000.0,
rabi_frequency=0.26e9
),
coupling_strength=0.002e9
)
transmon_pair = TransmonPair(settings)
Map the elements from your QUA configuration to the corresponding simulation channels. This ensures the quantum operations in your QUA program are correctly applied to the simulated qubits and resonators.
from quaqsim.architectures.from_qua_channels import (
TransmonPairBackendChannelReadout,
TransmonPairBackendChannelIQ,
ChannelType
)
qubit_1_freq = 4860000000
qubit_2_freq = 4970000000.0
channel_map = {
"qubit_1": TransmonPairBackendChannelIQ(
qubit_index=0,
carrier_frequency=qubit_1_freq,
operator_i=transmon_pair.transmon_1_drive_operator(quadrature='I'),
operator_q=transmon_pair.transmon_1_drive_operator(quadrature='Q'),
type=ChannelType.DRIVE
),
"qubit_1t2": TransmonPairBackendChannelIQ(
qubit_index=0,
carrier_frequency=qubit_2_freq,
operator_i=transmon_pair.transmon_1_drive_operator(quadrature='I'),
operator_q=transmon_pair.transmon_1_drive_operator(quadrature='Q'),
type=ChannelType.CONTROL
),
"qubit_2": TransmonPairBackendChannelIQ(
qubit_index=1,
carrier_frequency=qubit_2_freq,
operator_i=transmon_pair.transmon_2_drive_operator(quadrature='I'),
operator_q=transmon_pair.transmon_2_drive_operator(quadrature='Q'),
type=ChannelType.DRIVE
),
"resonator_1": TransmonPairBackendChannelReadout(0),
"resonator_2": TransmonPairBackendChannelReadout(1),
}
Define your QUA program, specifying the quantum operations you want to perform. Below is an example for simulating Rabi oscillations with an amplitude sweep:
from qm.qua import *
start, stop, step = -2, 2, 0.1
with program() as prog:
a = declare(fixed)
with for_(a, start, a < stop - 0.0001, a + step):
play("x90"*amp(a), "qubit_1")
play("x90"*amp(a), "qubit_2")
align("qubit_1", "qubit_2", "resonator_1", "resonator_2")
measure("readout", "resonator_1", None)
measure("readout", "resonator_2", None)
In this program, we perform an amplitude sweep on two qubits, playing x90 pulses and measuring the readout from the resonators. This setup allows us to observe the Rabi oscillations in the simulation.
Run the simulation and visualize the results. Use Qua-Qsim to simulate the QUA program and plot the resulting data to observe the Rabi oscillations.
import numpy as np
import matplotlib.pyplot as plt
from quaqsim import simulate_program
from quaqsim.architectures.transmon_pair_backend_from_qua import \
TransmonPairBackendFromQUA
backend = TransmonPairBackendFromQUA(transmon_pair, channel_map)
results = simulate_program(
qua_program=prog,
qua_config=config,
qua_config_to_backend_map=channel_map,
backend=backend,
num_shots=10_000,
)
for i, result in enumerate(results):
plt.plot(np.arange(start, stop, step), results[i], '.-', label=f"Simulated Q{i}")
plt.ylim(-0.05, 1.05)
plt.legend()
plt.show()
In this example, we use simulate_program to run the QUA program on the defined backend, then plot the results to visualize the Rabi oscillations for each qubit.
We welcome contributions from the community! If you would like to contribute to this project, please follow the steps below:
-
Fork the repository: Click on the "Fork" button at the top right of this repository to create a copy of it on your GitHub account.
-
Clone your fork: Clone the forked repository to your local machine using the following command:
git clone https://github.com/qua-platform/qua-qsim.git
-
Create a branch: Create a new branch for your contribution:
git checkout -b your-branch-name
-
Make your changes: Make the necessary changes to the codebase.
-
Commit your changes: Commit your changes with a meaningful commit message:
git commit -m "Description of your changes"
-
Push to GitHub: Push your changes to your forked repository:
git push origin your-branch-name
-
Submit a pull request: Go to the original repository and create a pull request from your forked repository and branch. Provide a clear description of the changes you have made and why they should be merged.
Before we can accept your contributions, you will need to sign a Contributor License Agreement (CLA). This ensures that we can distribute your code as part of the project.
The CLA can be found at https://cla-assistant.io/qua-platform/qua-qsim and is automatically presented for signing when you submit a pull request.