Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Suppress more numpy warnings from uncertainties #1350

Merged
merged 2 commits into from
Dec 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion qiskit_experiments/curve_analysis/curve_analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,7 +231,11 @@ def _run_data_processing(
)
processed_values = self.options.data_processor(to_process)
source["yval"] = unp.nominal_values(processed_values).flatten()
source["yerr"] = unp.std_devs(processed_values).flatten()
with np.errstate(invalid="ignore"):
# For averaged data, the processed std dev will be NaN.
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
source["yerr"] = unp.std_devs(processed_values).flatten()
source["category"] = category

table = ScatterTable(data=source)
Expand Down
11 changes: 7 additions & 4 deletions qiskit_experiments/curve_analysis/curve_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,10 +235,13 @@ def ufloat_params(self) -> Dict[str, uncertainties.UFloat]:
)
else:
# Invalid covariance matrix. Std dev is set to nan, i.e. not computed.
ufloat_fitvals = uarray(
nominal_values=[self.params[name] for name in self.var_names],
std_devs=np.full(len(self.var_names), np.nan),
)
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
ufloat_fitvals = uarray(
nominal_values=[self.params[name] for name in self.var_names],
std_devs=np.full(len(self.var_names), np.nan),
)
# Combine fixed params and fitting variables into a single dictionary
# Fixed parameter has zero std_dev
ufloat_params = {}
Expand Down
10 changes: 8 additions & 2 deletions qiskit_experiments/data_processing/nodes.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,10 @@ def _process(self, data: np.ndarray) -> np.ndarray:

reduced_array = np.mean(data, axis=ax)
nominals = unp.nominal_values(reduced_array)
errors = unp.std_devs(reduced_array)
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
errors = unp.std_devs(reduced_array)

if np.any(np.isnan(errors)):
# replace empty elements with SEM
Expand Down Expand Up @@ -781,7 +784,10 @@ def _process(self, data: np.ndarray) -> np.ndarray:
p_mean = alpha_posterior[0] / alpha_sum
p_var = p_mean * (1 - p_mean) / (alpha_sum + 1)

probabilities[idx] = ufloat(nominal_value=p_mean, std_dev=np.sqrt(p_var))
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
probabilities[idx] = ufloat(nominal_value=p_mean, std_dev=np.sqrt(p_var))

return probabilities

Expand Down
11 changes: 7 additions & 4 deletions test/data_processing/test_data_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -418,10 +418,13 @@ def test_json_trained(self):
unp.nominal_values(loaded_out),
)

np.testing.assert_array_almost_equal(
unp.std_devs(ref_out),
unp.std_devs(loaded_out),
)
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
np.testing.assert_array_almost_equal(
unp.std_devs(ref_out),
unp.std_devs(loaded_out),
)


class TestIQSingleAvg(BaseDataProcessorTest):
Expand Down
46 changes: 29 additions & 17 deletions test/data_processing/test_nodes.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,10 @@ class TestAveraging(BaseDataProcessorTest):

def test_simple(self):
"""Simple test of averaging. Standard error of mean is generated."""
datum = unp.uarray([[1, 2], [3, 4], [5, 6]], np.full((3, 2), np.nan))
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
datum = unp.uarray([[1, 2], [3, 4], [5, 6]], np.full((3, 2), np.nan))

node = AverageData(axis=1)
processed_data = node(data=datum)
Expand Down Expand Up @@ -85,16 +88,19 @@ def test_with_error(self):

def test_with_error_partly_non_error(self):
"""Compute error propagation. Some elements have no error."""
datum = unp.uarray(
[
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
],
[
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
[np.nan, 0.2, 0.3, 0.4, 0.5, 0.6],
],
)
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
datum = unp.uarray(
[
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
],
[
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
[np.nan, 0.2, 0.3, 0.4, 0.5, 0.6],
],
)

node = AverageData(axis=1)
processed_data = node(data=datum)
Expand Down Expand Up @@ -130,7 +136,10 @@ def test_iq_averaging(self):
)
iq_std = np.full_like(iq_data, np.nan)

self.create_experiment_data(unp.uarray(iq_data, iq_std), single_shot=True)
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
self.create_experiment_data(unp.uarray(iq_data, iq_std), single_shot=True)

avg_iq = AverageData(axis=0)
processed_data = avg_iq(data=np.asarray(self.iq_experiment.data(0)["memory"]))
Expand Down Expand Up @@ -188,11 +197,14 @@ def test_simple(self):
decimal=-8,
)

np.testing.assert_array_almost_equal(
unp.std_devs(processed),
unp.std_devs(expected),
decimal=-8,
)
with np.errstate(invalid="ignore"):
# Setting std_devs to NaN will trigger floating point exceptions
# which we can ignore. See https://stackoverflow.com/q/75656026
np.testing.assert_array_almost_equal(
unp.std_devs(processed),
unp.std_devs(expected),
decimal=-8,
)


class TestNormalize(QiskitExperimentsTestCase):
Expand Down