Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Arraylias integration - Rotating frame - #214

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 4 additions & 8 deletions docs/tutorials/dynamics_backend.rst
Original file line number Diff line number Diff line change
Expand Up @@ -318,8 +318,9 @@ To enable running of the single qubit experiments, we add the following to the `
backend.
- Add definitions of ``RZ`` gates as phase shifts. These instructions control the phase of the drive
channels, as well as any control channels acting on a given qubit.
- Add a ``CX`` gate which applies to all qubits. While this tutorial will not be utilizing it, this
ensures that validation steps checking that the device is fully connected will pass.
- Add a ``CX`` gate between qubits :math:`(0, 1)` and :math:`(1, 0)`. While this tutorial will not
be utilizing it, this ensures that validation steps checking that the device is fully connected
will pass.

.. jupyter-execute::

Expand All @@ -336,7 +337,7 @@ To enable running of the single qubit experiments, we add the following to the `
target.add_instruction(XGate(), properties={(0,): None, (1,): None})
target.add_instruction(SXGate(), properties={(0,): None, (1,): None})

target.add_instruction(CXGate())
target.add_instruction(CXGate(), properties={(0, 1): None, (1, 0): None})

# Add RZ instruction as phase shift for drag cal
phi = Parameter("phi")
Expand Down Expand Up @@ -472,11 +473,6 @@ values for the single qubit gates calibrated above.

from qiskit_experiments.library import CrossResonanceHamiltonian

backend.target.add_instruction(
instruction=CrossResonanceHamiltonian.CRPulseGate(width=Parameter("width")),
properties={(0, 1): None, (1, 0): None}
)

cr_ham_experiment = CrossResonanceHamiltonian(
qubits=(0, 1),
flat_top_widths=np.linspace(0, 5000, 17),
Expand Down
52 changes: 52 additions & 0 deletions qiskit_dynamics/arraylias/arraylias_state.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
from typing import Union
from collections.abc import Iterable
from arraylias import numpy_alias
from scipy.sparse import spmatrix
from qiskit.quantum_info.operators import Operator
from .asarray import register_to_asarray
from .to_dense import register_to_dense
from .to_numeric_matrix_type import register_to_numeric_matrix_type
from .to_sparse import register_to_sparse
from .matmul import register_matmul
from .rmatmul import register_rmatmul
from .multiply import register_multiply

from ..array import Array


DYNAMICS_ALIAS = numpy_alias()

# Set qiskit_dynamics.array.Array to be dispatched to numpy
DYNAMICS_ALIAS.register_type(Array, "numpy")

# register required custom versions of functions for sparse type here
DYNAMICS_ALIAS.register_type(spmatrix, lib="scipy_sparse")

try:
from jax.experimental.sparse import BCOO

# register required custom versions of functions for BCOO type here
DYNAMICS_ALIAS.register_type(BCOO, lib="jax_sparse")
except ImportError:
pass

# register required custom versions of functions for Operator type here
DYNAMICS_ALIAS.register_type(Operator, lib="operator")

# register required custom versions of functions for List type here
# need to discuss registering List type because the coverage of List is too broad.
DYNAMICS_ALIAS.register_type(list, lib="list")


register_to_asarray(alias=DYNAMICS_ALIAS)
register_to_dense(alias=DYNAMICS_ALIAS)
register_to_numeric_matrix_type(alias=DYNAMICS_ALIAS)
register_to_sparse(alias=DYNAMICS_ALIAS)
register_matmul(alias=DYNAMICS_ALIAS)
register_multiply(alias=DYNAMICS_ALIAS)
register_rmatmul(alias=DYNAMICS_ALIAS)

DYNAMICS_NUMPY = DYNAMICS_ALIAS()


ArrayLike = Union[DYNAMICS_ALIAS.registered_types()]
32 changes: 32 additions & 0 deletions qiskit_dynamics/arraylias/asarray.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
import numpy as np
from scipy.sparse import csr_matrix, issparse


def register_to_asarray(alias):
@alias.register_function(lib="scipy_sparse", path="asarray")
def _(arr):
if issparse(arr):
return arr
return csr_matrix(arr)

@alias.register_function(lib="list", path="asarray")
def _(arr):
if len(arr) == 0 or isinstance(arr[0], (list, tuple)):
return np.asarray(arr)
return alias(like=arr[0]).asarray([alias().asarray(sub_arr) for sub_arr in arr])

@alias.register_fallback(path="asarray")
def _(arr):
return np.asarray(arr)

try:
from jax.experimental.sparse import BCOO

@alias.register_function(lib="jax_sparse", path="asarray")
def _(arr):
if type(arr).__name__ == "BCOO":
return arr
return BCOO.fromdense(arr)

except ImportError:
pass
17 changes: 17 additions & 0 deletions qiskit_dynamics/arraylias/matmul.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
def register_matmul(alias):
@alias.register_function(lib="scipy_sparse", path="matmul")
def _(x, y):
return x * y

try:
from jax.experimental import sparse as jsparse
import jax.numpy as jnp

jsparse_matmul = jsparse.sparsify(jnp.matmul)

@alias.register_function(lib="jax_sparse", path="matmul")
def _(x, y):
return jsparse_matmul(x, y)

except:
pass
17 changes: 17 additions & 0 deletions qiskit_dynamics/arraylias/multiply.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
def register_multiply(alias):
@alias.register_function(lib="scipy_sparse", path="multiply")
def _(x, y):
return x.multiply(y)

try:
from jax.experimental import sparse as jsparse
import jax.numpy as jnp

jsparse_multiply = jsparse.sparsify(jnp.multiply)

@alias.register_function(lib="jax_sparse", path="multiply")
def _(x, y):
return jsparse_multiply(x, y)

except:
pass
28 changes: 28 additions & 0 deletions qiskit_dynamics/arraylias/rmatmul.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import numpy as np


def register_rmatmul(alias):
@alias.register_function(lib="numpy", path="rmatmul")
def _(x, y):
return np.matmul(y, x)

@alias.register_function(lib="scipy_sparse", path="rmatmul")
def _(x, y):
return y * x

try:
from jax.experimental import sparse as jsparse
import jax.numpy as jnp

jsparse_matmul = jsparse.sparsify(jnp.matmul)

@alias.register_function(lib="jax", path="rmatmul")
def _(x, y):
return jnp.matmul(y, x)

@alias.register_function(lib="jax_sparse", path="rmatmul")
def _(x, y):
return jsparse_matmul(y, x)

except:
pass
38 changes: 38 additions & 0 deletions qiskit_dynamics/arraylias/to_dense.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import numpy as np


def register_to_dense(alias):
@alias.register_default(path="to_dense")
def _(op):
if op is None:
return None
return op

@alias.register_function(lib="numpy", path="to_dense")
def _(op):
return op

try:

@alias.register_function(lib="jax", path="to_dense")
def _(op):
return op

@alias.register_function(lib="jax_sparse", path="to_dense")
def _(op):
return op.todense()

except:
pass

@alias.register_function(lib="scipy_sparse", path="to_dense")
def _(op):
return op.toarray()

@alias.register_fallback(path="to_dense")
def _(op):
return np.asarray(op)

@alias.register_function(lib="list", path="to_dense")
def _(op):
return alias().asarray([alias().to_dense(sub_op) for sub_op in op])
47 changes: 47 additions & 0 deletions qiskit_dynamics/arraylias/to_numeric_matrix_type.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
from scipy.sparse import spmatrix
from qiskit_dynamics.type_utils import isinstance_qutip_qobj


def register_to_numeric_matrix_type(alias):
@alias.register_default(path="to_numeric_matrix_type")
def _(op):
if op is None:
return None
if isinstance_qutip_qobj(op):
return alias().to_sparse(op.data)
return op

@alias.register_function(lib="numpy", path="to_numeric_matrix_type")
def _(op):
return op

@alias.register_function(lib="operator", path="to_numeric_matrix_type")
def _(op):
return alias().to_dense(op)

try:

@alias.register_function(lib="jax", path="to_numeric_matrix_type")
def _(op):
return op

@alias.register_function(lib="jax_sparse", path="to_numeric_matrix_type")
def _(op):
return op

except:
pass

@alias.register_function(lib="scipy_sparse", path="to_numeric_matrix_type")
def _(op):
return op

@alias.register_function(lib="list", path="to_numeric_matrix_type")
def _(op):
if isinstance(op[0], spmatrix) or isinstance_qutip_qobj(op[0]):
return [alias().to_sparse(sub_op) for sub_op in op]
return alias().asarray([alias().to_dense(sub_op) for sub_op in op])

@alias.register_fallback(path="to_numeric_matrix_type")
def _(op):
return op
52 changes: 52 additions & 0 deletions qiskit_dynamics/arraylias/to_sparse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import numpy as np
from scipy.sparse import csr_matrix
from qiskit_dynamics.type_utils import isinstance_qutip_qobj


def register_to_sparse(alias):
@alias.register_default(path="to_sparse")
def _(op):
if op is None:
return None
if isinstance_qutip_qobj(op):
return op.data
return op

@alias.register_function(lib="numpy", path="to_sparse")
def _(op):
if op.ndim < 3:
return csr_matrix(op)
return np.array([csr_matrix(sub_op) for sub_op in op])

try:
from jax.experimental.sparse import BCOO

@alias.register_function(lib="jax", path="to_sparse")
def _(op):
return BCOO.fromdense(op)

@alias.register_function(lib="jax_sparse", path="to_sparse")
def _(op):
return op

except ImportError:
pass

@alias.register_function(lib="scipy_sparse", path="to_sparse")
def _(op):
return op

@alias.register_fallback(path="to_sparse")
def _(op):
return csr_matrix(op)

@alias.register_function(lib="list", path="to_sparse")
def _(op):
try:
import jax.numpy as jnp

if isinstance(op[0], jnp.ndarray):
return BCOO.fromdense(op)
except ImportError:
return np.array([csr_matrix(sub_op) for sub_op in op])
return np.array([csr_matrix(sub_op) for sub_op in op])
29 changes: 0 additions & 29 deletions qiskit_dynamics/arraylias_state.py

This file was deleted.

Loading