Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix pytorch gradients #1450

Merged
merged 50 commits into from
Oct 10, 2024
Merged
Show file tree
Hide file tree
Changes from 34 commits
Commits
Show all changes
50 commits
Select commit Hold shift + click to select a range
0f800b2
create pr
Simone-Bordoni Aug 26, 2024
5281882
torch example
Simone-Bordoni Sep 10, 2024
ff9fab6
Merge branch 'master' into vqe_example
Simone-Bordoni Sep 10, 2024
b02222c
Merge branch 'master' into vqe_example
Simone-Bordoni Sep 16, 2024
364acbf
merge master
Simone-Bordoni Sep 16, 2024
9c96d41
refactor casting parameters
Simone-Bordoni Sep 17, 2024
b0d805c
gradients passing but value is zero...
Simone-Bordoni Sep 17, 2024
0e193a4
working gradient
Simone-Bordoni Sep 17, 2024
9ab0e99
Merge branch 'master' into fix_autodiff
Simone-Bordoni Sep 23, 2024
061a43d
solved errors
Simone-Bordoni Sep 23, 2024
3ce8a2d
solve errors
Simone-Bordoni Sep 24, 2024
21b08c1
fixed last tests
Simone-Bordoni Sep 24, 2024
cba7a01
fix coverage
Simone-Bordoni Sep 25, 2024
ad25c2c
improve coverage
Simone-Bordoni Sep 25, 2024
af6cdf0
Update src/qibo/backends/numpy.py
renatomello Sep 26, 2024
53931be
Update src/qibo/backends/numpy.py
renatomello Sep 26, 2024
502f0a2
Update src/qibo/gates/gates.py
renatomello Sep 26, 2024
3fdf63b
Update src/qibo/gates/gates.py
renatomello Sep 26, 2024
2f80f99
improve docstring
renatomello Sep 26, 2024
3cf4a8c
Merge branch 'fix_autodiff' of github.com:qiboteam/qibo into fix_auto…
renatomello Sep 26, 2024
612d138
Merge branch 'master' into fix_autodiff
renatomello Sep 26, 2024
5577d51
some corrections by renato
Simone-Bordoni Sep 30, 2024
23d8204
Merge branch 'master' into fix_autodiff
renatomello Sep 30, 2024
b77723c
corrections by renato
Simone-Bordoni Sep 30, 2024
e3d96f3
added test with gradients
Simone-Bordoni Sep 30, 2024
0a76d55
solve errors
Simone-Bordoni Sep 30, 2024
4cf7cdc
corrections by andrea
Simone-Bordoni Oct 1, 2024
e57a0b1
example of Andrea's suggestion
renatomello Oct 1, 2024
2c871d0
other corrections
Simone-Bordoni Oct 1, 2024
c790480
fix torch test
Simone-Bordoni Oct 1, 2024
524fd6c
use infidelity from quantum info in test
Simone-Bordoni Oct 1, 2024
77f29c9
test gradients only on linux
Simone-Bordoni Oct 2, 2024
23877f3
Merge branch 'master' into fix_autodiff
renatomello Oct 2, 2024
43db105
Merge branch 'fix_autodiff' of github.com:qiboteam/qibo into fix_auto…
renatomello Oct 2, 2024
a7a481e
corrections by andrea
Simone-Bordoni Oct 3, 2024
e7b7217
more corrections
Simone-Bordoni Oct 3, 2024
3b731fd
restore error in circuit quasm
Simone-Bordoni Oct 3, 2024
7e9c1e8
remove requires_grad from cast
Simone-Bordoni Oct 3, 2024
c6efb1f
Merge branch 'master' into fix_autodiff
renatomello Oct 4, 2024
2e2787b
Merge branch 'fix_autodiff' of github.com:qiboteam/qibo into fix_auto…
renatomello Oct 4, 2024
b48928a
fix tests
Simone-Bordoni Oct 4, 2024
96f6b75
Merge branch 'master' into fix_autodiff
renatomello Oct 7, 2024
699fd26
Merge branch 'master' into fix_autodiff
renatomello Oct 7, 2024
0b77687
Merge branch 'master' into fix_autodiff
renatomello Oct 7, 2024
571c701
Merge branch 'master' into fix_autodiff
renatomello Oct 8, 2024
acdc560
fix merge
renatomello Oct 8, 2024
0be1e8c
Merge branch 'master' into fix_autodiff
renatomello Oct 9, 2024
c01cd33
last corrections by andrea
Simone-Bordoni Oct 9, 2024
71bd989
Merge branch 'master' into fix_autodiff
renatomello Oct 9, 2024
3f22d8d
fix test
Simone-Bordoni Oct 9, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 45 additions & 9 deletions doc/source/code-examples/advancedexamples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -289,12 +289,13 @@ The following gates support parameter setting:
* :class:`qibo.gates.fSim`: Accepts a tuple of two parameters ``(theta, phi)``.
* :class:`qibo.gates.GeneralizedfSim`: Accepts a tuple of two parameters
``(unitary, phi)``. Here ``unitary`` should be a unitary matrix given as an
array or ``tf.Tensor`` of shape ``(2, 2)``.
array or ``tf.Tensor`` of shape ``(2, 2)``. A ``torch.Tensor`` is required when using the pytorch backend.
* :class:`qibo.gates.Unitary`: Accepts a single ``unitary`` parameter. This
should be an array or ``tf.Tensor`` of shape ``(2, 2)``.
should be an array or ``tf.Tensor`` of shape ``(2, 2)``. A ``torch.Tensor`` is required when using the pytorch backend.

Note that a ``np.ndarray`` or a ``tf.Tensor`` may also be used in the place of
a flat list. Using :meth:`qibo.models.circuit.Circuit.set_parameters` is more
a flat list (``torch.Tensor`` is required when using the pytorch backend).
Using :meth:`qibo.models.circuit.Circuit.set_parameters` is more
efficient than recreating a new circuit with new parameter values. The inverse
method :meth:`qibo.models.circuit.Circuit.get_parameters` is also available
and returns a list, dictionary or flat list with the current parameter values
Expand Down Expand Up @@ -551,9 +552,9 @@ Here is a simple example using the Heisenberg XXZ model Hamiltonian:
For more information on the available options of the ``vqe.minimize`` call we
refer to the :ref:`Optimizers <Optimizers>` section of the documentation.
Note that if the Stochastic Gradient Descent optimizer is used then the user
has to use a backend based on tensorflow primitives and not the default custom
has to use a backend based on tensorflow or pytorch primitives and not the default custom
backend, as custom operators currently do not support automatic differentiation.
To switch the backend one can do ``qibo.set_backend("tensorflow")``.
To switch the backend one can do ``qibo.set_backend("tensorflow")`` or ``qibo.set_backend("pytorch")``.
Check the :ref:`How to use automatic differentiation? <autodiff-example>`
section for more details.

Expand Down Expand Up @@ -695,12 +696,13 @@ the model. For example the previous example would have to be modified as:
How to use automatic differentiation?
-------------------------------------

The parameters of variational circuits can be optimized using the frameworks of
Tensorflow or Pytorch.

As a deep learning framework, Tensorflow supports
`automatic differentiation <https://www.tensorflow.org/tutorials/customization/autodiff>`_.
This can be used to optimize the parameters of variational circuits. For example
the following script optimizes the parameters of two rotations so that the circuit
output matches a target state using the fidelity as the corresponding loss
function.
The following script optimizes the parameters of two rotations so that the
circuit output matches a target state using the fidelity as the corresponding loss function.

Note that, as in the following example, the rotation angles have to assume real values
to ensure the rotational gates are representing unitary operators.
Expand Down Expand Up @@ -777,6 +779,40 @@ that is supported by Tensorflow, such as defining
and using the `Sequential model API <https://www.tensorflow.org/api_docs/python/tf/keras/Sequential>`_
to train them.

Similarly, Pytorch supports `automatic differentiation <https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorFor%20example%20tial.html>`_.
The following script optimizes the parameters of the variational circuit of the first example using the Pytorch framework.

.. code-block:: python

import qibo
qibo.set_backend("pytorch")
import torch
from qibo import gates, models

# Optimization parameters
nepochs = 1000
optimizer = torch.optim.Adam
target_state = torch.ones(4, dtype=torch.complex128) / 2.0

# Define circuit ansatz
params = torch.tensor(
torch.rand(2, dtype=torch.float64), requires_grad=True
)
c = models.Circuit(2)
c.add(gates.RX(0, params[0]))
c.add(gates.RY(1, params[1]))

optimizer = optimizer([params])

for _ in range(nepochs):
optimizer.zero_grad()
c.set_parameters(params)
final_state = c().state()
fidelity = torch.abs(torch.sum(torch.conj(target_state) * final_state))
loss = 1 - fidelity
loss.backward()
optimizer.step()


.. _noisy-example:

Expand Down
67 changes: 11 additions & 56 deletions src/qibo/backends/npmatrices.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,6 @@ def __init__(self, dtype):
def _cast(self, x, dtype):
return self.np.array(x, dtype=dtype)

# This method is used to cast the parameters of the gates to the right type for other backends
def _cast_parameter(self, x):
return x

@cached_property
def H(self):
return self._cast([[1, 1], [1, -1]], dtype=self.dtype) / math.sqrt(2)
Expand Down Expand Up @@ -66,34 +62,29 @@ def TDG(self):
)

def I(self, n=2):
return self._cast(self.np.eye(n), dtype=self.dtype)
return self.np.eye(n, dtype=self.dtype)

def Align(self, delay, n=2):
return self._cast(self.I(n), dtype=self.dtype)
return self.I(n)

def M(self): # pragma: no cover
raise_error(NotImplementedError)

def RX(self, theta):
theta = self._cast_parameter(theta)
cos = self.np.cos(theta / 2.0) + 0j
isin = -1j * self.np.sin(theta / 2.0)
return self._cast([[cos, isin], [isin, cos]], dtype=self.dtype)

def RY(self, theta):
theta = self._cast_parameter(theta)
cos = self.np.cos(theta / 2.0) + 0j
sin = self.np.sin(theta / 2.0) + 0j
return self._cast([[cos, -sin], [sin, cos]], dtype=self.dtype)

def RZ(self, theta):
theta = self._cast_parameter(theta)
phase = self.np.exp(0.5j * theta)
return self._cast([[self.np.conj(phase), 0], [0, phase]], dtype=self.dtype)

def PRX(self, theta, phi):
theta = self._cast_parameter(theta)
phi = self._cast_parameter(phi)
cos = self.np.cos(theta / 2)
sin = self.np.sin(theta / 2)
exponent1 = -1.0j * self.np.exp(-1.0j * phi)
Expand All @@ -104,25 +95,20 @@ def PRX(self, theta, phi):
)

def GPI(self, phi):
phi = self._cast_parameter(phi)
phase = self.np.exp(1.0j * phi)
return self._cast([[0, self.np.conj(phase)], [phase, 0]], dtype=self.dtype)

def GPI2(self, phi):
phi = self._cast_parameter(phi)
phase = self.np.exp(1.0j * phi)
return self._cast(
[[1, -1.0j * self.np.conj(phase)], [-1.0j * phase, 1]], dtype=self.dtype
) / math.sqrt(2)

def U1(self, theta):
theta = self._cast_parameter(theta)
phase = self.np.exp(1j * theta)
return self._cast([[1, 0], [0, phase]], dtype=self.dtype)

def U2(self, phi, lam):
phi = self._cast_parameter(phi)
lam = self._cast_parameter(lam)
eplus = self.np.exp(1j * (phi + lam) / 2.0)
eminus = self.np.exp(1j * (phi - lam) / 2.0)
return self._cast(
Expand All @@ -131,9 +117,6 @@ def U2(self, phi, lam):
) / math.sqrt(2)

def U3(self, theta, phi, lam):
theta = self._cast_parameter(theta)
phi = self._cast_parameter(phi)
lam = self._cast_parameter(lam)
cost = self.np.cos(theta / 2)
sint = self.np.sin(theta / 2)
eplus = self.np.exp(1j * (phi + lam) / 2.0)
Expand All @@ -147,8 +130,6 @@ def U3(self, theta, phi, lam):
)

def U1q(self, theta, phi):
theta = self._cast_parameter(theta)
phi = self._cast_parameter(phi)
return self._cast(
self.U3(theta, phi - math.pi / 2, math.pi / 2 - phi), dtype=self.dtype
)
Expand Down Expand Up @@ -179,12 +160,12 @@ def CZ(self):

@cached_property
def CSX(self):
a = self._cast_parameter((1 + 1j) / 2)
b = self.np.conj(a)
a = (1 + 1j) / 2
b = (1 - 1j) / 2
return self._cast(
[
[1, 0, 0, 0],
[0, 1, 0, 0],
[1 + 0j, 0, 0, 0],
[0, 1 + 0j, 0, 0],
[0, 0, a, b],
[0, 0, b, a],
],
Expand All @@ -193,20 +174,19 @@ def CSX(self):

@cached_property
def CSXDG(self):
a = self._cast_parameter((1 - 1j) / 2)
b = self.np.conj(a)
a = (1 + 1j) / 2
b = (1 - 1j) / 2
return self._cast(
[
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, a, b],
[1 + 0j, 0, 0, 0],
[0, 1 + 0j, 0, 0],
[0, 0, b, a],
[0, 0, a, b],
],
dtype=self.dtype,
)

def CRX(self, theta):
theta = self._cast_parameter(theta)
cos = self.np.cos(theta / 2.0) + 0j
isin = -1j * self.np.sin(theta / 2.0)
matrix = [
Expand All @@ -218,14 +198,12 @@ def CRX(self, theta):
return self._cast(matrix, dtype=self.dtype)

def CRY(self, theta):
theta = self._cast_parameter(theta)
cos = self.np.cos(theta / 2.0) + 0j
sin = self.np.sin(theta / 2.0) + 0j
matrix = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, cos, -sin], [0, 0, sin, cos]]
return self._cast(matrix, dtype=self.dtype)

def CRZ(self, theta):
theta = self._cast_parameter(theta)
phase = self.np.exp(0.5j * theta)
matrix = [
[1, 0, 0, 0],
Expand All @@ -236,7 +214,6 @@ def CRZ(self, theta):
return self._cast(matrix, dtype=self.dtype)

def CU1(self, theta):
theta = self._cast_parameter(theta)
phase = self.np.exp(1j * theta)
matrix = [
[1, 0, 0, 0],
Expand All @@ -247,8 +224,6 @@ def CU1(self, theta):
return self._cast(matrix, dtype=self.dtype)

def CU2(self, phi, lam):
phi = self._cast_parameter(phi)
lam = self._cast_parameter(lam)
eplus = self.np.exp(1j * (phi + lam) / 2.0) / math.sqrt(2)
eminus = self.np.exp(1j * (phi - lam) / 2.0) / math.sqrt(2)
matrix = [
Expand All @@ -260,9 +235,6 @@ def CU2(self, phi, lam):
return self._cast(matrix, dtype=self.dtype)

def CU3(self, theta, phi, lam):
theta = self._cast_parameter(theta)
phi = self._cast_parameter(phi)
lam = self._cast_parameter(lam)
cost = self.np.cos(theta / 2)
sint = self.np.sin(theta / 2)
eplus = self.np.exp(1j * (phi + lam) / 2.0)
Expand Down Expand Up @@ -324,8 +296,6 @@ def FSWAP(self):
)

def fSim(self, theta, phi):
theta = self._cast_parameter(theta)
phi = self._cast_parameter(phi)
cost = self.np.cos(theta) + 0j
isint = -1j * self.np.sin(theta)
phase = self.np.exp(-1j * phi)
Expand Down Expand Up @@ -355,7 +325,6 @@ def SYC(self):
)

def GeneralizedfSim(self, u, phi):
phi = self._cast_parameter(phi)
phase = self.np.exp(-1j * phi)
return self._cast(
[
Expand All @@ -368,7 +337,6 @@ def GeneralizedfSim(self, u, phi):
)

def RXX(self, theta):
theta = self._cast_parameter(theta)
cos = self.np.cos(theta / 2.0) + 0j
isin = -1j * self.np.sin(theta / 2.0)
return self._cast(
Expand All @@ -382,7 +350,6 @@ def RXX(self, theta):
)

def RYY(self, theta):
theta = self._cast_parameter(theta)
cos = self.np.cos(theta / 2.0) + 0j
isin = -1j * self.np.sin(theta / 2.0)
return self._cast(
Expand All @@ -396,7 +363,6 @@ def RYY(self, theta):
)

def RZZ(self, theta):
theta = self._cast_parameter(theta)
phase = self.np.exp(0.5j * theta)
return self._cast(
[
Expand All @@ -409,7 +375,6 @@ def RZZ(self, theta):
)

def RZX(self, theta):
theta = self._cast_parameter(theta)
cos, sin = self.np.cos(theta / 2) + 0j, self.np.sin(theta / 2) + 0j
return self._cast(
[
Expand All @@ -422,7 +387,6 @@ def RZX(self, theta):
)

def RXXYY(self, theta):
theta = self._cast_parameter(theta)
cos, sin = self.np.cos(theta / 2) + 0j, self.np.sin(theta / 2) + 0j
return self._cast(
[
Expand All @@ -435,11 +399,6 @@ def RXXYY(self, theta):
)

def MS(self, phi0, phi1, theta):
phi0, phi1, theta = (
self._cast_parameter(phi0),
self._cast_parameter(phi1),
self._cast_parameter(theta),
)
plus = self.np.exp(1.0j * (phi0 + phi1))
minus = self.np.exp(1.0j * (phi0 - phi1))
cos = self.np.cos(theta / 2) + 0j
Expand All @@ -455,7 +414,6 @@ def MS(self, phi0, phi1, theta):
)

def GIVENS(self, theta):
theta = self._cast_parameter(theta)
return self._cast(
[
[1, 0, 0, 0],
Expand Down Expand Up @@ -514,7 +472,6 @@ def CCZ(self):
)

def DEUTSCH(self, theta):
theta = self._cast_parameter(theta)
sin = self.np.sin(theta) + 0j # 0j necessary for right tensorflow dtype
cos = self.np.cos(theta) + 0j
return self._cast(
Expand All @@ -532,8 +489,6 @@ def DEUTSCH(self, theta):
)

def GeneralizedRBS(self, qubits_in, qubits_out, theta, phi):
theta = self._cast_parameter(theta)
phi = self._cast_parameter(phi)
bitstring_length = len(qubits_in) + len(qubits_out)
integer_in = "".join(
["1" if k in qubits_in else "0" for k in range(bitstring_length)]
Expand Down
2 changes: 0 additions & 2 deletions src/qibo/backends/numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -429,7 +429,6 @@ def execute_circuit(self, circuit, initial_state=None, nshots=1000):
if initial_state is None:
state = self.zero_density_matrix(nqubits)
else:
# cast to proper complex type
state = self.cast(initial_state)

for gate in circuit.queue:
Expand All @@ -439,7 +438,6 @@ def execute_circuit(self, circuit, initial_state=None, nshots=1000):
if initial_state is None:
state = self.zero_state(nqubits)
else:
# cast to proper complex type
state = self.cast(initial_state)

for gate in circuit.queue:
Expand Down
Loading