Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

port tests for rgb_to_grayscale functional and transforms #7967

Merged
merged 6 commits into from
Sep 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions test/test_transforms_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,11 +116,9 @@ class TestSmoke:
(transforms.RandAugment(), auto_augment_adapter),
(transforms.TrivialAugmentWide(), auto_augment_adapter),
(transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
(transforms.Grayscale(), None),
(transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
(transforms.RandomAutocontrast(p=1.0), None),
(transforms.RandomEqualize(p=1.0), None),
(transforms.RandomGrayscale(p=1.0), None),
(transforms.RandomInvert(p=1.0), None),
(transforms.RandomChannelPermutation(), None),
(transforms.RandomPhotometricDistort(p=1.0), None),
Expand Down
22 changes: 0 additions & 22 deletions test/test_transforms_v2_consistency.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,17 +122,6 @@ def __init__(
(torch.float32, torch.float64),
]
],
ConsistencyConfig(
v2_transforms.Grayscale,
legacy_transforms.Grayscale,
[
ArgsKwargs(num_output_channels=1),
ArgsKwargs(num_output_channels=3),
],
make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
# Use default tolerances of `torch.testing.assert_close`
closeness_kwargs=dict(rtol=None, atol=None),
),
ConsistencyConfig(
v2_transforms.ToPILImage,
legacy_transforms.ToPILImage,
Expand Down Expand Up @@ -217,17 +206,6 @@ def __init__(
],
closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
),
ConsistencyConfig(
v2_transforms.RandomGrayscale,
legacy_transforms.RandomGrayscale,
[
ArgsKwargs(p=0),
ArgsKwargs(p=1),
],
make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
# Use default tolerances of `torch.testing.assert_close`
closeness_kwargs=dict(rtol=None, atol=None),
),
ConsistencyConfig(
v2_transforms.PILToTensor,
legacy_transforms.PILToTensor,
Expand Down
55 changes: 55 additions & 0 deletions test/test_transforms_v2_refactored.py
Original file line number Diff line number Diff line change
Expand Up @@ -3945,3 +3945,58 @@ def test_transform_correctness(self, brightness, contrast, saturation, hue):

mae = (actual.float() - expected.float()).abs().mean()
assert mae < 2


class TestRgbToGrayscale:
@pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_image(self, dtype, device):
check_kernel(F.rgb_to_grayscale_image, make_image(dtype=dtype, device=device))

@pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image])
def test_functional(self, make_input):
check_functional(F.rgb_to_grayscale, make_input())

@pytest.mark.parametrize(
("kernel", "input_type"),
[
(F.rgb_to_grayscale_image, torch.Tensor),
(F._rgb_to_grayscale_image_pil, PIL.Image.Image),
(F.rgb_to_grayscale_image, tv_tensors.Image),
],
)
def test_functional_signature(self, kernel, input_type):
check_functional_kernel_signature_match(F.rgb_to_grayscale, kernel=kernel, input_type=input_type)

@pytest.mark.parametrize("transform", [transforms.Grayscale(), transforms.RandomGrayscale(p=1)])
@pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image])
def test_transform(self, transform, make_input):
check_transform(transform, make_input())

@pytest.mark.parametrize("num_output_channels", [1, 3])
@pytest.mark.parametrize("fn", [F.rgb_to_grayscale, transform_cls_to_functional(transforms.Grayscale)])
def test_image_correctness(self, num_output_channels, fn):
image = make_image(dtype=torch.uint8, device="cpu")

actual = fn(image, num_output_channels=num_output_channels)
expected = F.to_image(F.rgb_to_grayscale(F.to_pil_image(image), num_output_channels=num_output_channels))

assert_equal(actual, expected, rtol=0, atol=1)

@pytest.mark.parametrize("num_input_channels", [1, 3])
def test_random_transform_correctness(self, num_input_channels):
image = make_image(
color_space={
1: "GRAY",
3: "RGB",
}[num_input_channels],
dtype=torch.uint8,
device="cpu",
)

transform = transforms.RandomGrayscale(p=1)

actual = transform(image)
expected = F.to_image(F.rgb_to_grayscale(F.to_pil_image(image), num_output_channels=num_input_channels))

assert_equal(actual, expected, rtol=0, atol=1)