Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Static Analysis corrections on c++ model classes #2893

Merged
merged 4 commits into from
Oct 26, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions torchvision/csrc/models/densenet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ struct _TransitionImpl : torch::nn::SequentialImpl {
torch::nn::Conv2d(Options(num_input_features, num_output_features, 1)
.stride(1)
.bias(false)));
push_back("pool", torch::nn::Functional([](torch::Tensor input) {
push_back("pool", torch::nn::Functional([](const torch::Tensor& input) {
return torch::avg_pool2d(input, 2, 2, 0, false, true);
}));
}
Expand All @@ -91,7 +91,7 @@ TORCH_MODULE(_Transition);
DenseNetImpl::DenseNetImpl(
int64_t num_classes,
int64_t growth_rate,
std::vector<int64_t> block_config,
const std::vector<int64_t>& block_config,
int64_t num_init_features,
int64_t bn_size,
double drop_rate) {
Expand Down Expand Up @@ -157,7 +157,7 @@ torch::Tensor DenseNetImpl::forward(torch::Tensor x) {
DenseNet121Impl::DenseNet121Impl(
int64_t num_classes,
int64_t growth_rate,
std::vector<int64_t> block_config,
const std::vector<int64_t>& block_config,
int64_t num_init_features,
int64_t bn_size,
double drop_rate)
Expand All @@ -172,7 +172,7 @@ DenseNet121Impl::DenseNet121Impl(
DenseNet169Impl::DenseNet169Impl(
int64_t num_classes,
int64_t growth_rate,
std::vector<int64_t> block_config,
const std::vector<int64_t>& block_config,
int64_t num_init_features,
int64_t bn_size,
double drop_rate)
Expand All @@ -187,7 +187,7 @@ DenseNet169Impl::DenseNet169Impl(
DenseNet201Impl::DenseNet201Impl(
int64_t num_classes,
int64_t growth_rate,
std::vector<int64_t> block_config,
const std::vector<int64_t>& block_config,
int64_t num_init_features,
int64_t bn_size,
double drop_rate)
Expand All @@ -202,7 +202,7 @@ DenseNet201Impl::DenseNet201Impl(
DenseNet161Impl::DenseNet161Impl(
int64_t num_classes,
int64_t growth_rate,
std::vector<int64_t> block_config,
const std::vector<int64_t>& block_config,
int64_t num_init_features,
int64_t bn_size,
double drop_rate)
Expand Down
10 changes: 5 additions & 5 deletions torchvision/csrc/models/densenet.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ struct VISION_API DenseNetImpl : torch::nn::Module {
DenseNetImpl(
int64_t num_classes = 1000,
int64_t growth_rate = 32,
std::vector<int64_t> block_config = {6, 12, 24, 16},
const std::vector<int64_t>& block_config = {6, 12, 24, 16},
int64_t num_init_features = 64,
int64_t bn_size = 4,
double drop_rate = 0);
Expand All @@ -38,7 +38,7 @@ struct VISION_API DenseNet121Impl : DenseNetImpl {
DenseNet121Impl(
int64_t num_classes = 1000,
int64_t growth_rate = 32,
std::vector<int64_t> block_config = {6, 12, 24, 16},
const std::vector<int64_t>& block_config = {6, 12, 24, 16},
int64_t num_init_features = 64,
int64_t bn_size = 4,
double drop_rate = 0);
Expand All @@ -48,7 +48,7 @@ struct VISION_API DenseNet169Impl : DenseNetImpl {
DenseNet169Impl(
int64_t num_classes = 1000,
int64_t growth_rate = 32,
std::vector<int64_t> block_config = {6, 12, 32, 32},
const std::vector<int64_t>& block_config = {6, 12, 32, 32},
int64_t num_init_features = 64,
int64_t bn_size = 4,
double drop_rate = 0);
Expand All @@ -58,7 +58,7 @@ struct VISION_API DenseNet201Impl : DenseNetImpl {
DenseNet201Impl(
int64_t num_classes = 1000,
int64_t growth_rate = 32,
std::vector<int64_t> block_config = {6, 12, 48, 32},
const std::vector<int64_t>& block_config = {6, 12, 48, 32},
int64_t num_init_features = 64,
int64_t bn_size = 4,
double drop_rate = 0);
Expand All @@ -68,7 +68,7 @@ struct VISION_API DenseNet161Impl : DenseNetImpl {
DenseNet161Impl(
int64_t num_classes = 1000,
int64_t growth_rate = 48,
std::vector<int64_t> block_config = {6, 12, 36, 24},
const std::vector<int64_t>& block_config = {6, 12, 36, 24},
int64_t num_init_features = 96,
int64_t bn_size = 4,
double drop_rate = 0);
Expand Down
10 changes: 5 additions & 5 deletions torchvision/csrc/models/inception.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ InceptionAImpl::InceptionAImpl(int64_t in_channels, int64_t pool_features)
register_module("branch_pool", branch_pool);
}

torch::Tensor InceptionAImpl::forward(torch::Tensor x) {
torch::Tensor InceptionAImpl::forward(const torch::Tensor& x) {
auto branch1x1 = this->branch1x1->forward(x);

auto branch5x5 = this->branch5x5_1->forward(x);
Expand All @@ -76,7 +76,7 @@ InceptionBImpl::InceptionBImpl(int64_t in_channels)
register_module("branch3x3dbl_3", branch3x3dbl_3);
}

torch::Tensor InceptionBImpl::forward(torch::Tensor x) {
torch::Tensor InceptionBImpl::forward(const torch::Tensor& x) {
auto branch3x3 = this->branch3x3->forward(x);

auto branch3x3dbl = this->branch3x3dbl_1->forward(x);
Expand Down Expand Up @@ -115,7 +115,7 @@ InceptionCImpl::InceptionCImpl(int64_t in_channels, int64_t channels_7x7) {
register_module("branch_pool", branch_pool);
}

torch::Tensor InceptionCImpl::forward(torch::Tensor x) {
torch::Tensor InceptionCImpl::forward(const torch::Tensor& x) {
auto branch1x1 = this->branch1x1->forward(x);

auto branch7x7 = this->branch7x7_1->forward(x);
Expand Down Expand Up @@ -151,7 +151,7 @@ InceptionDImpl::InceptionDImpl(int64_t in_channels)
register_module("branch7x7x3_4", branch7x7x3_4);
}

torch::Tensor InceptionDImpl::forward(torch::Tensor x) {
torch::Tensor InceptionDImpl::forward(const torch::Tensor& x) {
auto branch3x3 = this->branch3x3_1->forward(x);
branch3x3 = this->branch3x3_2->forward(branch3x3);

Expand Down Expand Up @@ -185,7 +185,7 @@ InceptionEImpl::InceptionEImpl(int64_t in_channels)
register_module("branch_pool", branch_pool);
}

torch::Tensor InceptionEImpl::forward(torch::Tensor x) {
torch::Tensor InceptionEImpl::forward(const torch::Tensor& x) {
auto branch1x1 = this->branch1x1->forward(x);

auto branch3x3 = this->branch3x3_1->forward(x);
Expand Down
10 changes: 5 additions & 5 deletions torchvision/csrc/models/inception.h
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,15 @@ struct VISION_API InceptionAImpl : torch::nn::Module {

InceptionAImpl(int64_t in_channels, int64_t pool_features);

torch::Tensor forward(torch::Tensor x);
torch::Tensor forward(const torch::Tensor& x);
};

struct VISION_API InceptionBImpl : torch::nn::Module {
BasicConv2d branch3x3, branch3x3dbl_1, branch3x3dbl_2, branch3x3dbl_3;

InceptionBImpl(int64_t in_channels);

torch::Tensor forward(torch::Tensor x);
torch::Tensor forward(const torch::Tensor& x);
};

struct VISION_API InceptionCImpl : torch::nn::Module {
Expand All @@ -43,7 +43,7 @@ struct VISION_API InceptionCImpl : torch::nn::Module {

InceptionCImpl(int64_t in_channels, int64_t channels_7x7);

torch::Tensor forward(torch::Tensor x);
torch::Tensor forward(const torch::Tensor& x);
};

struct VISION_API InceptionDImpl : torch::nn::Module {
Expand All @@ -52,7 +52,7 @@ struct VISION_API InceptionDImpl : torch::nn::Module {

InceptionDImpl(int64_t in_channels);

torch::Tensor forward(torch::Tensor x);
torch::Tensor forward(const torch::Tensor& x);
};

struct VISION_API InceptionEImpl : torch::nn::Module {
Expand All @@ -62,7 +62,7 @@ struct VISION_API InceptionEImpl : torch::nn::Module {

InceptionEImpl(int64_t in_channels);

torch::Tensor forward(torch::Tensor x);
torch::Tensor forward(const torch::Tensor& x);
};

struct VISION_API InceptionAuxImpl : torch::nn::Module {
Expand Down
4 changes: 2 additions & 2 deletions torchvision/csrc/models/resnet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ BasicBlock::BasicBlock(
int64_t inplanes,
int64_t planes,
int64_t stride,
torch::nn::Sequential downsample,
const torch::nn::Sequential& downsample,
int64_t groups,
int64_t base_width)
: stride(stride), downsample(downsample) {
Expand Down Expand Up @@ -57,7 +57,7 @@ Bottleneck::Bottleneck(
int64_t inplanes,
int64_t planes,
int64_t stride,
torch::nn::Sequential downsample,
const torch::nn::Sequential& downsample,
int64_t groups,
int64_t base_width)
: stride(stride), downsample(downsample) {
Expand Down
4 changes: 2 additions & 2 deletions torchvision/csrc/models/resnet.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ struct VISION_API BasicBlock : torch::nn::Module {
int64_t inplanes,
int64_t planes,
int64_t stride = 1,
torch::nn::Sequential downsample = nullptr,
const torch::nn::Sequential& downsample = nullptr,
int64_t groups = 1,
int64_t base_width = 64);

Expand All @@ -59,7 +59,7 @@ struct VISION_API Bottleneck : torch::nn::Module {
int64_t inplanes,
int64_t planes,
int64_t stride = 1,
torch::nn::Sequential downsample = nullptr,
const torch::nn::Sequential& downsample = nullptr,
int64_t groups = 1,
int64_t base_width = 64);

Expand Down
1 change: 0 additions & 1 deletion torchvision/csrc/models/squeezenet.cpp
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
#include "squeezenet.h"

#include <limits>
#include "modelsimpl.h"

namespace vision {
Expand Down
2 changes: 1 addition & 1 deletion torchvision/csrc/models/vgg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ void VGGImpl::_initialize_weights() {
}

VGGImpl::VGGImpl(
torch::nn::Sequential features,
const torch::nn::Sequential& features,
int64_t num_classes,
bool initialize_weights) {
classifier = torch::nn::Sequential(
Expand Down
2 changes: 1 addition & 1 deletion torchvision/csrc/models/vgg.h
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ struct VISION_API VGGImpl : torch::nn::Module {
void _initialize_weights();

VGGImpl(
torch::nn::Sequential features,
const torch::nn::Sequential& features,
int64_t num_classes = 1000,
bool initialize_weights = true);

Expand Down