Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Memory-mapped nested tensors #618

Merged
merged 14 commits into from
May 8, 2024
34 changes: 31 additions & 3 deletions tensordict/_td.py
Original file line number Diff line number Diff line change
Expand Up @@ -2188,12 +2188,28 @@ def _populate(
dest=dest, value=value, key=key, copy_existing=copy_existing
):
filename = None if prefix is None else str(prefix / f"{key}.memmap")
if value.is_nested:
shape = value._nested_tensor_size()
# Make the shape a memmap tensor too
if prefix is not None:
shape_filename = Path(filename)
shape_filename = shape_filename.with_suffix(".shape.memmap")
MemoryMappedTensor.from_tensor(
shape,
filename=shape_filename,
copy_existing=copy_existing,
existsok=True,
copy_data=not like,
)
else:
shape = None
dest._tensordict[key] = MemoryMappedTensor.from_tensor(
value.data if value.requires_grad else value,
filename=filename,
copy_existing=copy_existing,
existsok=True,
copy_data=not like,
shape=shape,
)

if executor is None:
Expand All @@ -2203,8 +2219,11 @@ def _populate(
if prefix is not None:
metadata[key] = {
"device": str(value.device),
"shape": list(value.shape),
"shape": list(value.shape)
if not value.is_nested
else value._nested_tensor_size().shape,
"dtype": str(value.dtype),
"is_nested": value.is_nested,
}

if prefix is not None:
Expand Down Expand Up @@ -2258,16 +2277,25 @@ def _load_memmap(
if (
device is None or device != torch.device("meta")
) and not torch._guards.active_fake_mode():
if entry_metadata.get("is_nested", False):
# The shape is the shape of the shape, get the shape from it
shape = MemoryMappedTensor.from_filename(
(prefix / f"{key}.memmap").with_suffix(".shape.memmap"),
shape=shape,
dtype=torch.long,
)
else:
shape = torch.Size(shape)
tensor = MemoryMappedTensor.from_filename(
dtype=_STRDTYPE2DTYPE[dtype],
shape=torch.Size(entry_metadata["shape"]),
shape=shape,
filename=str(prefix / f"{key}.memmap"),
)
if device is not None:
tensor = tensor.to(device, non_blocking=True)
else:
tensor = torch.zeros(
torch.Size(entry_metadata["shape"]),
torch.Size(shape),
device=device,
dtype=_STRDTYPE2DTYPE[dtype],
)
Expand Down
4 changes: 3 additions & 1 deletion tensordict/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -6143,8 +6143,10 @@ def to_tensordict(self) -> T:
{
key: value.clone()
if not _is_tensor_collection(value.__class__)
else value
if is_non_tensor(value)
else value.to_tensordict()
for key, value in self.items()
for key, value in self.items(is_leaf=_is_leaf_nontensor)
},
device=self.device,
batch_size=self.batch_size,
Expand Down
Loading
Loading