Skip to content

Commit

Permalink
DLFW changes (#2552)
Browse files Browse the repository at this point in the history
  • Loading branch information
apbose authored Jan 25, 2024
1 parent 593ff44 commit cf3a688
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 32 deletions.
32 changes: 1 addition & 31 deletions examples/int8/training/vgg16/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,11 +8,8 @@
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets

from torch.utils.tensorboard import SummaryWriter

import torchvision.transforms as transforms
from vgg16 import vgg16

PARSER = argparse.ArgumentParser(
Expand Down Expand Up @@ -64,7 +61,6 @@

timestamp = datetime.timestamp(now)

writer = SummaryWriter(args.tensorboard + "/test_" + str(timestamp))
classes = (
"plane",
"car",
Expand All @@ -82,7 +78,6 @@
def main():
global state
global classes
global writer
if not os.path.isdir(args.ckpt_dir):
os.makedirs(args.ckpt_dir)

Expand Down Expand Up @@ -131,9 +126,6 @@ def main():
data = iter(training_dataloader)
images, _ = next(data)

writer.add_graph(model, images.cuda())
writer.close()

crit = nn.CrossEntropyLoss()
opt = optim.SGD(
model.parameters(),
Expand All @@ -156,8 +148,6 @@ def main():

for epoch in range(args.start_from, args.epochs):
adjust_lr(opt, epoch)
writer.add_scalar("Learning Rate", state["lr"], epoch)
writer.close()
print("Epoch: [%5d / %5d] LR: %f" % (epoch + 1, args.epochs, state["lr"]))

train(model, training_dataloader, crit, opt, epoch)
Expand All @@ -179,7 +169,6 @@ def main():


def train(model, dataloader, crit, opt, epoch):
global writer
model.train()
running_loss = 0.0
for batch, (data, labels) in enumerate(dataloader):
Expand All @@ -192,10 +181,6 @@ def train(model, dataloader, crit, opt, epoch):

running_loss += loss.item()
if batch % 50 == 49:
writer.add_scalar(
"Training Loss", running_loss / 100, epoch * len(dataloader) + batch
)
writer.close()
print(
"Batch: [%5d | %5d] loss: %.3f"
% (batch + 1, len(dataloader), running_loss / 100)
Expand All @@ -204,7 +189,6 @@ def train(model, dataloader, crit, opt, epoch):


def test(model, dataloader, crit, epoch):
global writer
global classes
total = 0
correct = 0
Expand All @@ -223,12 +207,6 @@ def test(model, dataloader, crit, epoch):
total += labels.size(0)
correct += (preds == labels).sum().item()

writer.add_scalar("Testing Loss", loss / total, epoch)
writer.close()

writer.add_scalar("Testing Accuracy", correct / total * 100, epoch)
writer.close()

test_probs = torch.cat([torch.stack(batch) for batch in class_probs])
test_preds = torch.cat(class_preds)
for i in range(len(classes)):
Expand Down Expand Up @@ -263,14 +241,6 @@ def add_pr_curve_tensorboard(class_index, test_probs, test_preds, global_step=0)
tensorboard_preds = test_preds == class_index
tensorboard_probs = test_probs[:, class_index]

writer.add_pr_curve(
classes[class_index],
tensorboard_preds,
tensorboard_probs,
global_step=global_step,
)
writer.close()


if __name__ == "__main__":
main()
2 changes: 1 addition & 1 deletion notebooks/EfficientNet-example.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -526,7 +526,7 @@
"# The compiled module will have precision as specified by \"op_precision\".\n",
"# Here, it will have FP32 precision.\n",
"trt_model_fp32 = torch_tensorrt.compile(model, inputs = [torch_tensorrt.Input((128, 3, 224, 224), dtype=torch.float32)],\n",
" enabled_precisions = torch.float32, # Run with FP32\n",
" enabled_precisions = {torch.float32}, # Run with FP32\n",
" workspace_size = 1 << 22\n",
")"
]
Expand Down

0 comments on commit cf3a688

Please sign in to comment.