Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make floatX and intX always return TensorVariables #6636

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/contributing/implementing_distribution.md
Original file line number Diff line number Diff line change
Expand Up @@ -146,12 +146,12 @@ class Blah(PositiveContinuous):
# We pass the standard parametrizations to super().dist
@classmethod
def dist(cls, param1, param2=None, alt_param2=None, **kwargs):
param1 = pt.as_tensor_variable(intX(param1))
param1 = intX(param1)
if param2 is not None and alt_param2 is not None:
raise ValueError("Only one of param2 and alt_param2 is allowed.")
if alt_param2 is not None:
param2 = 1 / alt_param2
param2 = pt.as_tensor_variable(floatX(param2))
param2 = floatX(param2)

# The first value-only argument should be a list of the parameters that
# the rv_op needs in order to be instantiated
Expand Down
143 changes: 65 additions & 78 deletions pymc/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,8 +304,8 @@ class Uniform(BoundedContinuous):

@classmethod
def dist(cls, lower=0, upper=1, **kwargs):
lower = pt.as_tensor_variable(floatX(lower))
upper = pt.as_tensor_variable(floatX(upper))
lower = floatX(lower)
upper = floatX(upper)
return super().dist([lower, upper], **kwargs)

def moment(rv, size, lower, upper):
Expand Down Expand Up @@ -509,12 +509,8 @@ class Normal(Continuous):
@classmethod
def dist(cls, mu=0, sigma=None, tau=None, **kwargs):
tau, sigma = get_tau_sigma(tau=tau, sigma=sigma)
sigma = pt.as_tensor_variable(sigma)

# tau = pt.as_tensor_variable(tau)
# mean = median = mode = mu = pt.as_tensor_variable(floatX(mu))
# variance = 1.0 / self.tau

mu = floatX(mu)
sigma = floatX(sigma)
return super().dist([mu, sigma], **kwargs)

def moment(rv, size, mu, sigma):
Expand Down Expand Up @@ -670,12 +666,11 @@ def dist(
**kwargs,
) -> RandomVariable:
tau, sigma = get_tau_sigma(tau=tau, sigma=sigma)
sigma = pt.as_tensor_variable(sigma)
tau = pt.as_tensor_variable(tau)
mu = pt.as_tensor_variable(floatX(mu))
sigma = floatX(sigma)
mu = floatX(mu)

lower = pt.as_tensor_variable(floatX(lower)) if lower is not None else pt.constant(-np.inf)
upper = pt.as_tensor_variable(floatX(upper)) if upper is not None else pt.constant(np.inf)
lower = floatX(lower) if lower is not None else pt.constant(-np.inf)
upper = floatX(upper) if upper is not None else pt.constant(np.inf)
return super().dist([mu, sigma, lower, upper], **kwargs)

def moment(rv, size, mu, sigma, lower, upper):
Expand Down Expand Up @@ -948,9 +943,9 @@ class Wald(PositiveContinuous):
@classmethod
def dist(cls, mu=None, lam=None, phi=None, alpha=0.0, **kwargs):
mu, lam, phi = cls.get_mu_lam_phi(mu, lam, phi)
alpha = pt.as_tensor_variable(floatX(alpha))
mu = pt.as_tensor_variable(floatX(mu))
lam = pt.as_tensor_variable(floatX(lam))
alpha = floatX(alpha)
mu = floatX(mu)
lam = floatX(lam)
return super().dist([mu, lam, alpha], **kwargs)

def moment(rv, size, mu, lam, alpha):
Expand Down Expand Up @@ -1115,8 +1110,8 @@ class Beta(UnitContinuous):
@classmethod
def dist(cls, alpha=None, beta=None, mu=None, sigma=None, nu=None, *args, **kwargs):
alpha, beta = cls.get_alpha_beta(alpha, beta, mu, sigma, nu)
alpha = pt.as_tensor_variable(floatX(alpha))
beta = pt.as_tensor_variable(floatX(beta))
alpha = floatX(alpha)
beta = floatX(beta)

return super().dist([alpha, beta], **kwargs)

Expand Down Expand Up @@ -1242,8 +1237,8 @@ class Kumaraswamy(UnitContinuous):

@classmethod
def dist(cls, a, b, *args, **kwargs):
a = pt.as_tensor_variable(floatX(a))
b = pt.as_tensor_variable(floatX(b))
a = floatX(a)
b = floatX(b)

return super().dist([a, b], *args, **kwargs)

Expand Down Expand Up @@ -1328,7 +1323,7 @@ class Exponential(PositiveContinuous):

@classmethod
def dist(cls, lam, *args, **kwargs):
lam = pt.as_tensor_variable(floatX(lam))
lam = floatX(lam)

# PyTensor exponential op is parametrized in terms of mu (1/lam)
return super().dist([pt.reciprocal(lam)], **kwargs)
Expand Down Expand Up @@ -1409,8 +1404,8 @@ class Laplace(Continuous):

@classmethod
def dist(cls, mu, b, *args, **kwargs):
b = pt.as_tensor_variable(floatX(b))
mu = pt.as_tensor_variable(floatX(mu))
b = floatX(b)
mu = floatX(mu)

return super().dist([mu, b], *args, **kwargs)

Expand Down Expand Up @@ -1518,9 +1513,9 @@ class AsymmetricLaplace(Continuous):
@classmethod
def dist(cls, kappa=None, mu=None, b=None, q=None, *args, **kwargs):
kappa = cls.get_kappa(kappa, q)
b = pt.as_tensor_variable(floatX(b))
kappa = pt.as_tensor_variable(floatX(kappa))
mu = pt.as_tensor_variable(floatX(mu))
b = floatX(b)
kappa = floatX(kappa)
mu = floatX(mu)

return super().dist([b, kappa, mu], *args, **kwargs)

Expand Down Expand Up @@ -1634,8 +1629,8 @@ class LogNormal(PositiveContinuous):
def dist(cls, mu=0, sigma=None, tau=None, *args, **kwargs):
tau, sigma = get_tau_sigma(tau=tau, sigma=sigma)

mu = pt.as_tensor_variable(floatX(mu))
sigma = pt.as_tensor_variable(floatX(sigma))
mu = floatX(mu)
sigma = floatX(sigma)

return super().dist([mu, sigma], *args, **kwargs)

Expand Down Expand Up @@ -1759,9 +1754,9 @@ class StudentT(Continuous):

@classmethod
def dist(cls, nu, mu=0, *, sigma=None, lam=None, **kwargs):
nu = pt.as_tensor_variable(floatX(nu))
nu = floatX(nu)
lam, sigma = get_tau_sigma(tau=lam, sigma=sigma)
sigma = pt.as_tensor_variable(sigma)
sigma = floatX(sigma)

return super().dist([nu, mu, sigma], **kwargs)

Expand Down Expand Up @@ -1856,8 +1851,8 @@ class Pareto(BoundedContinuous):

@classmethod
def dist(cls, alpha, m, **kwargs):
alpha = pt.as_tensor_variable(floatX(alpha))
m = pt.as_tensor_variable(floatX(m))
alpha = floatX(alpha)
m = floatX(m)

return super().dist([alpha, m], **kwargs)

Expand Down Expand Up @@ -1953,8 +1948,8 @@ class Cauchy(Continuous):

@classmethod
def dist(cls, alpha, beta, *args, **kwargs):
alpha = pt.as_tensor_variable(floatX(alpha))
beta = pt.as_tensor_variable(floatX(beta))
alpha = floatX(alpha)
beta = floatX(beta)

return super().dist([alpha, beta], **kwargs)

Expand Down Expand Up @@ -2024,7 +2019,7 @@ class HalfCauchy(PositiveContinuous):

@classmethod
def dist(cls, beta, *args, **kwargs):
beta = pt.as_tensor_variable(floatX(beta))
beta = floatX(beta)
return super().dist([0.0, beta], **kwargs)

def moment(rv, size, loc, beta):
Expand Down Expand Up @@ -2119,8 +2114,8 @@ class Gamma(PositiveContinuous):
@classmethod
def dist(cls, alpha=None, beta=None, mu=None, sigma=None, **kwargs):
alpha, beta = cls.get_alpha_beta(alpha, beta, mu, sigma)
alpha = pt.as_tensor_variable(floatX(alpha))
beta = pt.as_tensor_variable(floatX(beta))
alpha = floatX(alpha)
beta = floatX(beta)

# The PyTensor `GammaRV` `Op` will invert the `beta` parameter itself
return super().dist([alpha, beta], **kwargs)
Expand Down Expand Up @@ -2228,8 +2223,8 @@ class InverseGamma(PositiveContinuous):
@classmethod
def dist(cls, alpha=None, beta=None, mu=None, sigma=None, *args, **kwargs):
alpha, beta = cls._get_alpha_beta(alpha, beta, mu, sigma)
alpha = pt.as_tensor_variable(floatX(alpha))
beta = pt.as_tensor_variable(floatX(beta))
alpha = floatX(alpha)
beta = floatX(beta)

return super().dist([alpha, beta], **kwargs)

Expand Down Expand Up @@ -2332,7 +2327,7 @@ class ChiSquared(PositiveContinuous):

@classmethod
def dist(cls, nu, *args, **kwargs):
nu = pt.as_tensor_variable(floatX(nu))
nu = floatX(nu)
return super().dist([nu], *args, **kwargs)

def moment(rv, size, nu):
Expand Down Expand Up @@ -2417,8 +2412,8 @@ class Weibull(PositiveContinuous):

@classmethod
def dist(cls, alpha, beta, *args, **kwargs):
alpha = pt.as_tensor_variable(floatX(alpha))
beta = pt.as_tensor_variable(floatX(beta))
alpha = floatX(alpha)
beta = floatX(beta)

return super().dist([alpha, beta], *args, **kwargs)

Expand Down Expand Up @@ -2537,9 +2532,9 @@ class HalfStudentT(PositiveContinuous):

@classmethod
def dist(cls, nu, sigma=None, lam=None, *args, **kwargs):
nu = pt.as_tensor_variable(floatX(nu))
nu = floatX(nu)
lam, sigma = get_tau_sigma(lam, sigma)
sigma = pt.as_tensor_variable(sigma)
sigma = floatX(sigma)

return super().dist([nu, sigma], *args, **kwargs)

Expand Down Expand Up @@ -2657,9 +2652,9 @@ class ExGaussian(Continuous):

@classmethod
def dist(cls, mu=0.0, sigma=None, nu=None, *args, **kwargs):
mu = pt.as_tensor_variable(floatX(mu))
sigma = pt.as_tensor_variable(floatX(sigma))
nu = pt.as_tensor_variable(floatX(nu))
mu = floatX(mu)
sigma = floatX(sigma)
nu = floatX(nu)

return super().dist([mu, sigma, nu], *args, **kwargs)

Expand Down Expand Up @@ -2762,8 +2757,8 @@ class VonMises(CircularContinuous):

@classmethod
def dist(cls, mu=0.0, kappa=1.0, *args, **kwargs):
mu = pt.as_tensor_variable(floatX(mu))
kappa = pt.as_tensor_variable(floatX(kappa))
mu = floatX(mu)
kappa = floatX(kappa)
return super().dist([mu, kappa], *args, **kwargs)

def moment(rv, size, mu, kappa):
Expand Down Expand Up @@ -2865,10 +2860,9 @@ class SkewNormal(Continuous):
@classmethod
def dist(cls, alpha=1, mu=0.0, sigma=None, tau=None, *args, **kwargs):
tau, sigma = get_tau_sigma(tau=tau, sigma=sigma)
alpha = pt.as_tensor_variable(floatX(alpha))
mu = pt.as_tensor_variable(floatX(mu))
tau = pt.as_tensor_variable(tau)
sigma = pt.as_tensor_variable(sigma)
alpha = floatX(alpha)
mu = floatX(mu)
sigma = floatX(sigma)

return super().dist([mu, sigma, alpha], *args, **kwargs)

Expand Down Expand Up @@ -2954,9 +2948,9 @@ class Triangular(BoundedContinuous):

@classmethod
def dist(cls, lower=0, upper=1, c=0.5, *args, **kwargs):
lower = pt.as_tensor_variable(floatX(lower))
upper = pt.as_tensor_variable(floatX(upper))
c = pt.as_tensor_variable(floatX(c))
lower = floatX(lower)
upper = floatX(upper)
c = floatX(c)

return super().dist([lower, c, upper], *args, **kwargs)

Expand Down Expand Up @@ -3061,8 +3055,8 @@ class Gumbel(Continuous):

@classmethod
def dist(cls, mu, beta, **kwargs):
mu = pt.as_tensor_variable(floatX(mu))
beta = pt.as_tensor_variable(floatX(beta))
mu = floatX(mu)
beta = floatX(beta)

return super().dist([mu, beta], **kwargs)

Expand Down Expand Up @@ -3171,8 +3165,8 @@ class Rice(PositiveContinuous):
@classmethod
def dist(cls, nu=None, sigma=None, b=None, *args, **kwargs):
nu, b, sigma = cls.get_nu_b(nu, b, sigma)
b = pt.as_tensor_variable(floatX(b))
sigma = pt.as_tensor_variable(floatX(sigma))
b = floatX(b)
sigma = floatX(sigma)

return super().dist([b, sigma], *args, **kwargs)

Expand Down Expand Up @@ -3270,8 +3264,8 @@ class Logistic(Continuous):

@classmethod
def dist(cls, mu=0.0, s=1.0, *args, **kwargs):
mu = pt.as_tensor_variable(floatX(mu))
s = pt.as_tensor_variable(floatX(s))
mu = floatX(mu)
s = floatX(s)
return super().dist([mu, s], *args, **kwargs)

def moment(rv, size, mu, s):
Expand Down Expand Up @@ -3365,11 +3359,9 @@ class LogitNormal(UnitContinuous):

@classmethod
def dist(cls, mu=0, sigma=None, tau=None, **kwargs):
mu = pt.as_tensor_variable(floatX(mu))
mu = floatX(mu)
tau, sigma = get_tau_sigma(tau=tau, sigma=sigma)
sigma = pt.as_tensor_variable(sigma)
tau = pt.as_tensor_variable(tau)

sigma = floatX(sigma)
return super().dist([mu, sigma], **kwargs)

def moment(rv, size, mu, sigma):
Expand Down Expand Up @@ -3499,11 +3491,6 @@ def dist(cls, x_points, pdf_points, *args, **kwargs):
x_points = pt.constant(floatX(x_points))
pdf_points = pt.constant(floatX(pdf_points))
cdf_points = pt.constant(floatX(cdf_points))

# lower = pt.as_tensor_variable(x_points[0])
# upper = pt.as_tensor_variable(x_points[-1])
# median = _interpolated_argcdf(0.5, pdf_points, cdf_points, x_points)

return super().dist([x_points, pdf_points, cdf_points], **kwargs)

def moment(rv, size, x_points, pdf_points, cdf_points):
Expand Down Expand Up @@ -3607,8 +3594,8 @@ class Moyal(Continuous):

@classmethod
def dist(cls, mu=0, sigma=1.0, *args, **kwargs):
mu = pt.as_tensor_variable(floatX(mu))
sigma = pt.as_tensor_variable(floatX(sigma))
mu = floatX(mu)
sigma = floatX(sigma)

return super().dist([mu, sigma], *args, **kwargs)

Expand Down Expand Up @@ -3694,9 +3681,9 @@ def __init__(self, get_pdf=False):
self.get_pdf = get_pdf

def make_node(self, x, h, z):
x = pt.as_tensor_variable(floatX(x))
h = pt.as_tensor_variable(floatX(h))
z = pt.as_tensor_variable(floatX(z))
x = floatX(x)
h = floatX(h)
z = floatX(z)
bshape = broadcast_shape(x, h, z)
shape = [None] * len(bshape)
return Apply(self, [x, h, z], [pt.TensorType(pytensor.config.floatX, shape)()])
Expand Down Expand Up @@ -3795,8 +3782,8 @@ class PolyaGamma(PositiveContinuous):

@classmethod
def dist(cls, h=1.0, z=0.0, **kwargs):
h = pt.as_tensor_variable(floatX(h))
z = pt.as_tensor_variable(floatX(z))
h = floatX(h)
z = floatX(z)

msg = f"The variable {h} specified for PolyaGamma has non-positive "
msg += "values, making it unsuitable for this parameter."
Expand Down
Loading