Skip to content

Commit

Permalink
Merge pull request #3590 from Dpananos/gsoc_ode
Browse files Browse the repository at this point in the history
Add Differential Equation API
  • Loading branch information
twiecki authored Sep 3, 2019
2 parents 2f1d0fb + 1fae10d commit c7a41c3
Show file tree
Hide file tree
Showing 9 changed files with 1,405 additions and 199 deletions.
2 changes: 1 addition & 1 deletion RELEASE-NOTES.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
## PyMC3 3.8 (on deck)

### New features

- Add capabilities to do inference on parameters in a differential equation with `DifferentialEquation`. See [#3590](https://github.com/pymc-devs/pymc3/pull/3590).
- Distinguish between `Data` and `Deterministic` variables when graphing models with graphviz. PR [#3491](https://github.com/pymc-devs/pymc3/pull/3491).
- Sequential Monte Carlo - Approximate Bayesian Computation step method is now available. The implementation is in an experimental stage and will be further improved.
- Added `Matern12` covariance function for Gaussian processes. This is the Matern kernel with nu=1/2.
Expand Down
570 changes: 570 additions & 0 deletions docs/source/notebooks/ODE_API_parameter_estimation.ipynb

Large diffs are not rendered by default.

296 changes: 99 additions & 197 deletions docs/source/notebooks/ODE_parameter_estimation.ipynb

Large diffs are not rendered by default.

3 changes: 2 additions & 1 deletion docs/source/notebooks/table_of_contents_examples.js
Original file line number Diff line number Diff line change
Expand Up @@ -53,5 +53,6 @@ Gallery.contents = {
"normalizing_flows_overview": "Variational Inference",
"gaussian-mixture-model-advi": "Variational Inference",
"GLM-hierarchical-advi-minibatch": "Variational Inference",
"ODE_parameter_estimation": "Inference in ODE models"
"ODE_parameter_estimation": "Inference in ODE models",
"ODE_API_parameter_estimation": "Inference in ODE models with DifferentialEquation"
}
1 change: 1 addition & 0 deletions pymc3/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from .math import logaddexp, logsumexp, logit, invlogit, expand_packed_triangular, probit, invprobit
from .model import *
from .model_graph import model_to_graphviz
from . import ode
from .stats import *
from .sampling import *
from .step_methods import *
Expand Down
2 changes: 2 additions & 0 deletions pymc3/ode/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from . import utils
from .ode import DifferentialEquation
183 changes: 183 additions & 0 deletions pymc3/ode/ode.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
import numpy as np
import scipy
import theano
import theano.tensor as tt
from ..ode.utils import augment_system, ODEGradop


class DifferentialEquation(theano.Op):
"""
Specify an ordinary differential equation
.. math::
\dfrac{dy}{dt} = f(y,t,p) \quad y(t_0) = y_0
Parameters
----------
func : callable
Function specifying the differential equation
t0 : float
Time corresponding to the initial condition
times : array
Array of times at which to evaluate the solution of the differential equation.
n_states : int
Dimension of the differential equation. For scalar differential equations, n_states=1.
For vector valued differential equations, n_states = number of differential equations in the system.
n_odeparams : int
Number of parameters in the differential equation.
.. code-block:: python
def odefunc(y, t, p):
#Logistic differential equation
return p[0] * y[0] * (1 - y[0])
times = np.arange(0.5, 5, 0.5)
ode_model = DifferentialEquation(func=odefunc, t0=0, times=times, n_states=1, n_odeparams=1)
"""

__props__ = ("func", "t0", "times", "n_states", "n_odeparams")

def __init__(self, func, times, n_states, n_odeparams, t0=0):
if not callable(func):
raise ValueError("Argument func must be callable.")
if n_states < 1:
raise ValueError("Argument n_states must be at least 1.")
if n_odeparams <= 0:
raise ValueError("Argument n_odeparams must be positive.")

# Public
self.func = func
self.t0 = t0
self.times = tuple(times)
self.n_states = n_states
self.n_odeparams = n_odeparams

# Private
self._n = n_states
self._m = n_odeparams + n_states

self._augmented_times = np.insert(times, 0, t0)
self._augmented_func = augment_system(func, self._n, self._m)
self._sens_ic = self._make_sens_ic()

self._cached_y = None
self._cached_sens = None
self._cached_parameters = None

self._grad_op = ODEGradop(self._numpy_vsp)

def _make_sens_ic(self):
"""
The sensitivity matrix will always have consistent form.
If the first n_odeparams entries of the parameters vector in the simulate call
correspond to ode paramaters, then the first n_odeparams columns in
the sensitivity matrix will be 0
If the last n_states entries of the paramters vector in the simulate call
correspond to initial conditions of the system,
then the last n_states columns of the sensitivity matrix should form
an identity matrix
"""

# Initialize the sensitivity matrix to be 0 everywhere
sens_matrix = np.zeros((self._n, self._m))

# Slip in the identity matrix in the appropirate place
sens_matrix[:, -self.n_states :] = np.eye(self.n_states)

# We need the sensitivity matrix to be a vector (see augmented_function)
# Ravel and return
dydp = sens_matrix.ravel()

return dydp

def _system(self, Y, t, p):
"""This is the function that will be passed to odeint. Solves both ODE and sensitivities
"""

dydt, ddt_dydp = self._augmented_func(Y[: self._n], t, p, Y[self._n :])
derivatives = np.concatenate([dydt, ddt_dydp])
return derivatives

def _simulate(self, parameters):
# Initial condition comprised of state initial conditions and raveled
# sensitivity matrix
y0 = np.concatenate([parameters[self.n_odeparams :], self._sens_ic])

# perform the integration
sol = scipy.integrate.odeint(
func=self._system, y0=y0, t=self._augmented_times, args=(parameters,)
)
# The solution
y = sol[1:, : self.n_states]

# The sensitivities, reshaped to be a sequence of matrices
sens = sol[1:, self.n_states :].reshape(len(self.times), self._n, self._m)

return y, sens

def _cached_simulate(self, parameters):
if np.array_equal(np.array(parameters), self._cached_parameters):

return self._cached_y, self._cached_sens

return self._simulate(np.array(parameters))

def _state(self, parameters):
y, sens = self._cached_simulate(np.array(parameters))
self._cached_y, self._cached_sens, self._cached_parameters = y, sens, parameters
return y.ravel()

def _numpy_vsp(self, parameters, g):
_, sens = self._cached_simulate(np.array(parameters))

# Each element of sens is an nxm sensitivity matrix
# There is one sensitivity matrix per time step, making sens a (len(times), n_states, len(parameter))
# dimensional array. Reshaping the sens array in this way is like stacking each of the elements of sens on top
# of one another.
numpy_sens = sens.reshape((self.n_states * len(self.times), len(parameters)))
# The dot product here is equivalent to np.einsum('ijk,jk', sens, g)
# if sens was not reshaped and if g had the same shape as yobs
return numpy_sens.T.dot(g)

def make_node(self, odeparams, y0):
if len(odeparams) != self.n_odeparams:
raise ValueError(
"odeparams has too many or too few parameters. Expected {a} parameter(s) but got {b}".format(
a=self.n_odeparams, b=len(odeparams)
)
)
if len(y0) != self.n_states:
raise ValueError(
"y0 has too many or too few parameters. Expected {a} parameter(s) but got {b}".format(
a=self.n_states, b=len(y0)
)
)

if np.ndim(odeparams) > 1:
odeparams = np.ravel(odeparams)
if np.ndim(y0) > 1:
y0 = np.ravel(y0)

odeparams = tt.as_tensor_variable(odeparams)
y0 = tt.as_tensor_variable(y0)
parameters = tt.concatenate([odeparams, y0])
return theano.Apply(self, [parameters], [parameters.type()])

def perform(self, node, inputs_storage, output_storage):
parameters = inputs_storage[0]
out = output_storage[0]
# get the numerical solution of ODE states
out[0] = self._state(parameters)

def grad(self, inputs, output_grads):
x = inputs[0]
g = output_grads[0]
# pass the VSP when asked for gradient
grad_op_apply = self._grad_op(x, g)

return [grad_op_apply]
80 changes: 80 additions & 0 deletions pymc3/ode/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import numpy as np
import theano
import theano.tensor as tt


def augment_system(ode_func, n, m):
"""
Function to create augmented system.
Take a function which specifies a set of differential equations and return
a compiled function which allows for computation of gradients of the
differential equation's solition with repsect to the parameters.
Args:
ode_func (function): Differential equation. Returns array-like
n: Number of rows of the sensitivity matrix
m: Number of columns of the sensitivity matrix
Returns:
system (function): Augemted system of differential equations.
"""

# Present state of the system
t_y = tt.vector("y", dtype=theano.config.floatX)
t_y.tag.test_value = np.zeros((n,))
# Parameter(s). Should be vector to allow for generaliztion to multiparameter
# systems of ODEs. Is m dimensional because it includes all ode parameters as well as initical conditions
t_p = tt.vector("p", dtype=theano.config.floatX)
t_p.tag.test_value = np.zeros((m,))
# Time. Allow for non-automonous systems of ODEs to be analyzed
t_t = tt.scalar("t", dtype=theano.config.floatX)
t_t.tag.test_value = 2.459

# Present state of the gradients:
# Will always be 0 unless the parameter is the inital condition
# Entry i,j is partial of y[i] wrt to p[j]
dydp_vec = tt.vector("dydp", dtype=theano.config.floatX)
dydp_vec.tag.test_value = np.zeros(n * m)

dydp = dydp_vec.reshape((n, m))

# Stack the results of the ode_func
f_tensor = tt.stack(ode_func(t_y, t_t, t_p))

# Now compute gradients
J = tt.jacobian(f_tensor, t_y)

Jdfdy = tt.dot(J, dydp)

grad_f = tt.jacobian(f_tensor, t_p)

# This is the time derivative of dydp
ddt_dydp = (Jdfdy + grad_f).flatten()

system = theano.function(
inputs=[t_y, t_t, t_p, dydp_vec],
outputs=[f_tensor, ddt_dydp],
on_unused_input="ignore",
)

return system


class ODEGradop(theano.Op):
def __init__(self, numpy_vsp):
self._numpy_vsp = numpy_vsp

def make_node(self, x, g):

x = theano.tensor.as_tensor_variable(x)
g = theano.tensor.as_tensor_variable(g)
node = theano.Apply(self, [x, g], [g.type()])
return node

def perform(self, node, inputs_storage, output_storage):
x = inputs_storage[0]
g = inputs_storage[1]
out = output_storage[0]
out[0] = self._numpy_vsp(x, g) # get the numerical VSP
Loading

0 comments on commit c7a41c3

Please sign in to comment.