-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #54 from pyiron/langevin
Add langevin
- Loading branch information
Showing
3 changed files
with
202 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import numpy as np | ||
from scipy.constants import physical_constants | ||
|
||
from atomistics.workflows.shared.workflow import Workflow | ||
|
||
|
||
KB = physical_constants["Boltzmann constant in eV/K"][0] | ||
EV_TO_U_ANGSQ_PER_FSSQ = physical_constants["Faraday constant"][0] / 10**7 | ||
U_ANGSQ_PER_FSSQ_TO_EV = 1.0 / EV_TO_U_ANGSQ_PER_FSSQ | ||
|
||
|
||
def langevin_delta_v( | ||
temperature, time_step, masses, velocities, damping_timescale=None | ||
): | ||
""" | ||
Velocity changes due to the Langevin thermostat. | ||
Args: | ||
temperature (float): The target temperature in K. | ||
time_step (float): The MD time step in fs. | ||
masses (numpy.ndarray): Per-atom masses in u with a shape (N_atoms, 1). | ||
damping_timescale (float): The characteristic timescale of the thermostat in fs. | ||
velocities (numpy.ndarray): Per-atom velocities in angstrom/fs. | ||
Returns: | ||
(numpy.ndarray): Per atom accelerations to use for changing velocities. | ||
""" | ||
if damping_timescale is not None: | ||
drag = -0.5 * time_step * velocities / damping_timescale | ||
noise = np.sqrt( | ||
EV_TO_U_ANGSQ_PER_FSSQ | ||
* KB | ||
* temperature | ||
* time_step | ||
/ (masses * damping_timescale) | ||
) * np.random.randn(*velocities.shape) | ||
noise -= np.mean(noise, axis=0) | ||
return drag + noise | ||
else: | ||
return 0.0 | ||
|
||
|
||
def convert_to_acceleration(forces, masses): | ||
return forces * EV_TO_U_ANGSQ_PER_FSSQ / masses | ||
|
||
|
||
def get_initial_velocities(temperature, masses, overheat_fraction=2.0): | ||
vel_scale = np.sqrt(EV_TO_U_ANGSQ_PER_FSSQ * KB * temperature / masses) * np.sqrt( | ||
overheat_fraction | ||
) | ||
vel_dir = np.random.randn(len(masses), 3) | ||
velocities = vel_scale * vel_dir | ||
velocities -= np.mean(velocities, axis=0) | ||
return velocities | ||
|
||
|
||
def get_first_half_step(forces, masses, time_step, velocities): | ||
acceleration = convert_to_acceleration(forces, masses) | ||
return velocities + 0.5 * acceleration * time_step | ||
|
||
|
||
class LangevinWorkflow(Workflow): | ||
def __init__( | ||
self, | ||
structure, | ||
temperature=1000.0, | ||
overheat_fraction=2.0, | ||
damping_timescale=100.0, | ||
time_step=1, | ||
): | ||
self.structure = structure | ||
self.temperature = temperature | ||
self.overheat_fraction = overheat_fraction | ||
self.damping_timescale = damping_timescale | ||
self.time_step = time_step | ||
self.masses = np.array([a.mass for a in self.structure[:]])[:, np.newaxis] | ||
self.positions = self.structure.positions | ||
self.velocities = get_initial_velocities( | ||
temperature=self.temperature, | ||
masses=self.masses, | ||
overheat_fraction=self.overheat_fraction, | ||
) | ||
self.gamma = self.masses / self.damping_timescale | ||
self.forces = None | ||
|
||
def generate_structures(self): | ||
""" | ||
Returns: | ||
(dict) | ||
""" | ||
if self.forces is not None: | ||
# first half step | ||
vel_half = get_first_half_step( | ||
forces=self.forces, | ||
masses=self.masses, | ||
time_step=self.time_step, | ||
velocities=self.velocities, | ||
) | ||
|
||
# damping | ||
vel_half += langevin_delta_v( | ||
temperature=self.temperature, | ||
time_step=self.time_step, | ||
masses=self.masses, | ||
damping_timescale=self.damping_timescale, | ||
velocities=self.velocities, | ||
) | ||
|
||
# postion update | ||
pos_step = self.positions + vel_half * self.time_step | ||
structure = self.structure.copy() | ||
structure.positions = pos_step | ||
else: | ||
structure = self.structure | ||
return {"calc_forces": {0: structure}, "calc_energy": {0: structure}} | ||
|
||
def analyse_structures(self, output_dict): | ||
self.forces, eng_pot = output_dict["forces"][0], output_dict["energy"][0] | ||
|
||
# second half step | ||
acceleration = convert_to_acceleration(forces=self.forces, masses=self.masses) | ||
vel_step = self.velocities + 0.5 * acceleration * self.time_step | ||
|
||
# damping | ||
vel_step += langevin_delta_v( | ||
temperature=self.temperature, | ||
time_step=self.time_step, | ||
masses=self.masses, | ||
damping_timescale=self.damping_timescale, | ||
velocities=self.velocities, | ||
) | ||
|
||
# kinetic energy | ||
kinetic_energy = ( | ||
0.5 * np.sum(self.masses * vel_step * vel_step) / EV_TO_U_ANGSQ_PER_FSSQ | ||
) | ||
self.velocities = vel_step.copy() | ||
return eng_pot, kinetic_energy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
import os | ||
|
||
from ase.build import bulk | ||
import numpy as np | ||
import unittest | ||
|
||
from atomistics.workflows.langevin.workflow import LangevinWorkflow | ||
|
||
|
||
try: | ||
from atomistics.calculators.lammps import ( | ||
evaluate_with_lammps_library, get_potential_dataframe, LammpsASELibrary | ||
) | ||
|
||
skip_lammps_test = False | ||
except ImportError: | ||
skip_lammps_test = True | ||
|
||
|
||
@unittest.skipIf( | ||
skip_lammps_test, "LAMMPS is not installed, so the LAMMPS tests are skipped." | ||
) | ||
class TestLangevin(unittest.TestCase): | ||
def test_langevin(self): | ||
steps = 300 | ||
potential = '1999--Mishin-Y--Al--LAMMPS--ipr1' | ||
resource_path = os.path.join(os.path.dirname(__file__), "static", "lammps") | ||
structure = bulk("Al", cubic=True).repeat([2, 2, 2]) | ||
df_pot = get_potential_dataframe( | ||
structure=structure, | ||
resource_path=resource_path | ||
) | ||
df_pot_selected = df_pot[df_pot.Name == potential].iloc[0] | ||
workflow = LangevinWorkflow( | ||
structure=structure, | ||
temperature=1000.0, | ||
overheat_fraction=2.0, | ||
damping_timescale=100.0, | ||
time_step=1, | ||
) | ||
lmp = LammpsASELibrary( | ||
working_directory=None, | ||
cores=1, | ||
comm=None, | ||
logger=None, | ||
log_file=None, | ||
library=None, | ||
diable_log_file=True, | ||
) | ||
eng_pot_lst, eng_kin_lst = [], [] | ||
for i in range(steps): | ||
task_dict = workflow.generate_structures() | ||
result_dict = evaluate_with_lammps_library( | ||
task_dict=task_dict, | ||
potential_dataframe=df_pot_selected, | ||
lmp=lmp, | ||
) | ||
eng_pot, eng_kin = workflow.analyse_structures(output_dict=result_dict) | ||
eng_pot_lst.append(eng_pot) | ||
eng_kin_lst.append(eng_kin) | ||
lmp.close() | ||
eng_tot_lst = np.array(eng_pot_lst) + np.array(eng_kin_lst) | ||
eng_tot_mean = np.mean(eng_tot_lst[200:]) | ||
self.assertTrue(-105 < eng_tot_mean) | ||
self.assertTrue(eng_tot_mean < -103) |