Enable pandas type checking #1479
1 053 fail, 1 603 skipped, 17 636 pass in 1h 21m 10s
Annotations
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_isel_dataarray (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dbd6730>
def test_isel_dataarray(self) -> None:
# Make sure isel works lazily. GH:issue:1688
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:772:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_orthogonal_indexing (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdcbac0>
def test_orthogonal_indexing(self) -> None:
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:644:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_vectorized_indexing (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdcbd30>
def test_vectorized_indexing(self) -> None:
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:658:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_array_type_after_indexing (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dbd69a0>
def test_array_type_after_indexing(self) -> None:
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:799:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_vectorized_indexing_negative_step (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdcbfd0>
def test_vectorized_indexing_negative_step(self) -> None:
# use dask explicitly when present
open_kwargs: dict[str, Any] | None
if has_dask:
open_kwargs = {"chunks": {}}
else:
open_kwargs = None
in_memory = create_test_data()
def multiple_indexing(indexers):
# make sure a sequence of lazy indexings certainly works.
with self.roundtrip(in_memory, open_kwargs=open_kwargs) as on_disk:
actual = on_disk["var3"]
expected = in_memory["var3"]
for ind in indexers:
actual = actual.isel(ind)
expected = expected.isel(ind)
# make sure the array is not yet loaded into memory
assert not actual.variable._in_memory
assert_identical(expected, actual.load())
# with negative step slice.
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(-1, 1, -1),
}
]
> multiple_indexing(indexers)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:748:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:731: in multiple_indexing
with self.roundtrip(in_memory, open_kwargs=open_kwargs) as on_disk:
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_ondisk_after_print (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dbe0970>
def test_ondisk_after_print(self) -> None:
"""Make sure print does not load file into memory"""
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:833:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_isel_dataarray (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdd6340>
def test_isel_dataarray(self) -> None:
# Make sure isel works lazily. GH:issue:1688
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:772:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_array_type_after_indexing (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdd66a0>
def test_array_type_after_indexing(self) -> None:
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:799:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_encoding_kwarg_dates (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08cfdb070>
def test_encoding_kwarg_dates(self) -> None:
ds = Dataset({"t": pd.date_range("2000-01-01", periods=3)})
units = "days since 1900-01-01"
kwargs = dict(encoding={"t": {"units": units}})
> with self.roundtrip(ds, save_kwargs=kwargs) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:1177:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_ondisk_after_print (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdd6fd0>
def test_ondisk_after_print(self) -> None:
"""Make sure print does not load file into memory"""
in_memory = create_test_data()
> with self.roundtrip(in_memory) as on_disk:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:833:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_append_overwrite_values (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dbdf1c0>
def test_append_overwrite_values(self) -> None:
# regression for GH1215
data = create_test_data()
with create_tmp_file(allow_cleanup_failure=False) as tmp_file:
> self.save(data, tmp_file, mode="w")
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:1258:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_roundtrip_consolidated[False] (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dae5df0>
consolidated = False
@pytest.mark.parametrize("consolidated", [False, True, None])
def test_roundtrip_consolidated(self, consolidated) -> None:
if consolidated and self.zarr_version > 2:
pytest.xfail("consolidated metadata is not supported for zarr v3 yet")
expected = create_test_data()
> with self.roundtrip(
expected,
save_kwargs={"consolidated": consolidated},
open_kwargs={"backend_kwargs": {"consolidated": consolidated}},
) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2144:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_roundtrip_consolidated[True] (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dae5ee0>
consolidated = True
@pytest.mark.parametrize("consolidated", [False, True, None])
def test_roundtrip_consolidated(self, consolidated) -> None:
if consolidated and self.zarr_version > 2:
pytest.xfail("consolidated metadata is not supported for zarr v3 yet")
expected = create_test_data()
> with self.roundtrip(
expected,
save_kwargs={"consolidated": consolidated},
open_kwargs={"backend_kwargs": {"consolidated": consolidated}},
) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2144:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestNetCDF4Data
github-actions / Test Results
8 out of 9 runs failed: test_zero_dimensional_variable (xarray.tests.test_backends.TestNetCDF4Data)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestNetCDF4Data object at 0x7f8d8c748c10>
def test_zero_dimensional_variable(self) -> None:
expected = create_test_data()
expected["float_var"] = ([], 1.0e9, {"units": "units of awesome"})
expected["bytes_var"] = ([], b"foobar")
expected["string_var"] = ([], "foobar")
> with self.roundtrip(expected) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:350:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_roundtrip_consolidated[None] (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dafa100>
consolidated = None
@pytest.mark.parametrize("consolidated", [False, True, None])
def test_roundtrip_consolidated(self, consolidated) -> None:
if consolidated and self.zarr_version > 2:
pytest.xfail("consolidated metadata is not supported for zarr v3 yet")
expected = create_test_data()
> with self.roundtrip(
expected,
save_kwargs={"consolidated": consolidated},
open_kwargs={"backend_kwargs": {"consolidated": consolidated}},
) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2144:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_encoding_kwarg_dates (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdb6be0>
def test_encoding_kwarg_dates(self) -> None:
ds = Dataset({"t": pd.date_range("2000-01-01", periods=3)})
units = "days since 1900-01-01"
kwargs = dict(encoding={"t": {"units": units}})
> with self.roundtrip(ds, save_kwargs=kwargs) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:1177:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestNetCDF4Data
github-actions / Test Results
8 out of 9 runs failed: test_write_store (xarray.tests.test_backends.TestNetCDF4Data)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestNetCDF4Data object at 0x7f8d8c748dc0>
def test_write_store(self) -> None:
expected = create_test_data()
with self.create_store() as store:
> expected.dump_to_store(store)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:356:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2168: in dump_to_store
dump_to_store(self, store, **kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestNetCDF4Data
github-actions / Test Results
8 out of 9 runs failed: test_roundtrip_test_data (xarray.tests.test_backends.TestNetCDF4Data)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestNetCDF4Data object at 0x7f8d8ceb2100>
def test_roundtrip_test_data(self) -> None:
expected = create_test_data()
> with self.roundtrip(expected) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:383:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_read_non_consolidated_warning (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dafa340>
def test_read_non_consolidated_warning(self) -> None:
if self.zarr_version > 2:
pytest.xfail("consolidated metadata is not supported for zarr v3 yet")
expected = create_test_data()
with self.create_zarr_target() as store:
> expected.to_zarr(store, consolidated=False, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2158:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_append_write (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdba7c0>
def test_append_write(self) -> None:
# regression for GH1215
data = create_test_data()
> with self.roundtrip_append(data) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:1251:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:330: in roundtrip_append
self.save(data[[key]], path, mode=mode, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestNetCDF4Data
github-actions / Test Results
8 out of 9 runs failed: test_load (xarray.tests.test_backends.TestNetCDF4Data)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestNetCDF4Data object at 0x7f8d8ceb2040>
def test_load(self) -> None:
expected = create_test_data()
@contextlib.contextmanager
def assert_loads(vars=None):
if vars is None:
vars = expected
with self.roundtrip(expected) as actual:
for k, v in actual.variables.items():
# IndexVariables are eagerly loaded into memory
assert v._in_memory == (k in actual.dims)
yield actual
for k, v in actual.variables.items():
if k in vars:
assert v._in_memory
assert_identical(expected, actual)
with pytest.raises(AssertionError):
# make sure the contextmanager works!
> with assert_loads() as ds:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:406:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:394: in assert_loads
with self.roundtrip(expected) as actual:
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
6 out of 9 runs failed: test_with_chunkstore (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dafa820>
def test_with_chunkstore(self) -> None:
expected = create_test_data()
with (
self.create_zarr_target() as store_target,
self.create_zarr_target() as chunk_store,
):
save_kwargs = {"chunk_store": chunk_store}
> self.save(expected, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2177:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestH5NetCDFFileObject
github-actions / Test Results
8 out of 9 runs failed: test_append_overwrite_values (xarray.tests.test_backends.TestH5NetCDFFileObject)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestH5NetCDFFileObject object at 0x7f2c6cdba9d0>
def test_append_overwrite_values(self) -> None:
# regression for GH1215
data = create_test_data()
with create_tmp_file(allow_cleanup_failure=False) as tmp_file:
> self.save(data, tmp_file, mode="w")
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:1258:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestZarrWriteEmpty
github-actions / Test Results
5 out of 9 runs failed: test_auto_chunk (xarray.tests.test_backends.TestZarrWriteEmpty)
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestZarrWriteEmpty object at 0x7fb08dafaa90>
@requires_dask
def test_auto_chunk(self) -> None:
original = create_test_data().chunk()
> with self.roundtrip(original, open_kwargs={"chunks": None}) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2188:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2135: in roundtrip
self.save(data, store_target, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:2117: in save
return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2551: in to_zarr
return to_zarr( # type: ignore[call-overload,misc]
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1710: in to_zarr
dump_to_store(dataset, zstore, writer, encoding=encoding)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:664: in store
variables_encoded, attributes = self.encode(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in encode
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:302: in <dictcomp>
variables = {k: self.encode_variable(v) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:598: in encode_variable
variable = encode_zarr_variable(variable)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/zarr.py#x1B[0m:314: in encode_zarr_variable
var = conventions.encode_cf_variable(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError
Check warning on line 0 in xarray.tests.test_backends.TestNetCDF4Data
github-actions / Test Results
8 out of 9 runs failed: test_dataset_compute (xarray.tests.test_backends.TestNetCDF4Data)
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.9/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.9/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.9/pytest.xml [took 0s]
Raw output
NameError: name 'NPDatetimeUnitOptions' is not defined
self = <xarray.tests.test_backends.TestNetCDF4Data object at 0x7f8d8c748f70>
def test_dataset_compute(self) -> None:
expected = create_test_data()
> with self.roundtrip(expected) as actual:
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:423:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.9/contextlib.py#x1B[0m:119: in __enter__
return next(self.gen)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:315: in roundtrip
self.save(data, path, **save_kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_backends.py#x1B[0m:336: in save
return dataset.to_netcdf(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataset.py#x1B[0m:2327: in to_netcdf
return to_netcdf( # type: ignore # mypy cannot resolve the overloads:(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1350: in to_netcdf
dump_to_store(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/api.py#x1B[0m:1397: in dump_to_store
store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:363: in store
variables, attributes = self.encode(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/backends/common.py#x1B[0m:452: in encode
variables, attributes = cf_encoder(variables, attributes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in cf_encoder
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:795: in <dictcomp>
new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()}
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/conventions.py#x1B[0m:196: in encode_cf_variable
var = coder.encode(var, name=name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:977: in encode
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:726: in encode_cf_datetime
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:738: in _eagerly_encode_cf_datetime
data_units = infer_datetime_units(dates)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:446: in infer_datetime_units
units = _infer_time_units_from_diff(unique_timedeltas)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:400: in _infer_time_units_from_diff
if np.all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:384: in _unit_timedelta_numpy
numpy_units = _netcdf_to_numpy_timeunit(units)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
units = 'days'
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
> NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
#x1B[1m#x1B[31mE NameError: name 'NPDatetimeUnitOptions' is not defined#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/coding/times.py#x1B[0m:119: NameError