Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reimplement quantile with apply_ufunc #3559

Merged
merged 4 commits into from
Nov 25, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,9 @@ Breaking changes

New Features
~~~~~~~~~~~~
- :py:meth:`Dataset.quantile`, :py:meth:`DataArray.quantile` and ``GroupBy.quantile``
now work with dask Variables.
By `Deepak Cherian <https://github.com/dcherian>`_.


Bug fixes
Expand Down
6 changes: 1 addition & 5 deletions xarray/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -5174,11 +5174,7 @@ def quantile(
new = self._replace_with_new_dims(
variables, coord_names=coord_names, attrs=attrs, indexes=indexes
)
if "quantile" in new.dims:
new.coords["quantile"] = Variable("quantile", q)
else:
new.coords["quantile"] = q
return new
return new.assign_coords(quantile=q)

def rank(self, dim, pct=False, keep_attrs=None):
"""Ranks the data.
Expand Down
63 changes: 34 additions & 29 deletions xarray/core/variable.py
Original file line number Diff line number Diff line change
Expand Up @@ -1716,40 +1716,45 @@ def quantile(self, q, dim=None, interpolation="linear", keep_attrs=None):
numpy.nanpercentile, pandas.Series.quantile, Dataset.quantile,
DataArray.quantile
"""
if isinstance(self.data, dask_array_type):
raise TypeError(
"quantile does not work for arrays stored as dask "
"arrays. Load the data via .compute() or .load() "
"prior to calling this method."
)

q = np.asarray(q, dtype=np.float64)

new_dims = list(self.dims)
if dim is not None:
axis = self.get_axis_num(dim)
if utils.is_scalar(dim):
new_dims.remove(dim)
else:
for d in dim:
new_dims.remove(d)
else:
axis = None
new_dims = []

# Only add the quantile dimension if q is array-like
if q.ndim != 0:
new_dims = ["quantile"] + new_dims

qs = np.nanpercentile(
self.data, q * 100.0, axis=axis, interpolation=interpolation
)
from .computation import apply_ufunc

if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
attrs = self._attrs if keep_attrs else None

return Variable(new_dims, qs, attrs)
scalar = utils.is_scalar(q)
q = np.atleast_1d(np.asarray(q, dtype=np.float64))

if dim is None:
dim = self.dims

if utils.is_scalar(dim):
dim = [dim]

def _wrapper(npa, **kwargs):
# move quantile axis to end. required for apply_ufunc
return np.moveaxis(np.nanpercentile(npa, **kwargs), 0, -1)

axis = np.arange(-1, -1 * len(dim) - 1, -1)
result = apply_ufunc(
_wrapper,
self,
input_core_dims=[dim],
exclude_dims=set(dim),
output_core_dims=[["quantile"]],
output_dtypes=[np.float64],
output_sizes={"quantile": len(q)},
dask="parallelized",
kwargs={"q": q * 100, "axis": axis, "interpolation": interpolation},
)

# for backward compatibility
result = result.transpose("quantile", ...)
if scalar:
result = result.squeeze("quantile")
if keep_attrs:
result.attrs = self._attrs
return result

def rank(self, dim, pct=False):
"""Ranks the data.
Expand Down
27 changes: 16 additions & 11 deletions xarray/tests/test_dataarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@
from xarray.core import dtypes
from xarray.core.common import full_like
from xarray.core.indexes import propagate_indexes
from xarray.core.utils import is_scalar

from xarray.tests import (
LooseVersion,
ReturnItem,
Expand Down Expand Up @@ -2330,17 +2332,20 @@ def test_reduce_out(self):
with pytest.raises(TypeError):
orig.mean(out=np.ones(orig.shape))

def test_quantile(self):
for q in [0.25, [0.50], [0.25, 0.75]]:
for axis, dim in zip(
[None, 0, [0], [0, 1]], [None, "x", ["x"], ["x", "y"]]
):
actual = DataArray(self.va).quantile(q, dim=dim, keep_attrs=True)
expected = np.nanpercentile(
self.dv.values, np.array(q) * 100, axis=axis
)
np.testing.assert_allclose(actual.values, expected)
assert actual.attrs == self.attrs
@pytest.mark.parametrize("q", [0.25, [0.50], [0.25, 0.75]])
@pytest.mark.parametrize(
"axis, dim", zip([None, 0, [0], [0, 1]], [None, "x", ["x"], ["x", "y"]])
)
def test_quantile(self, q, axis, dim):
actual = DataArray(self.va).quantile(q, dim=dim, keep_attrs=True)
expected = np.nanpercentile(self.dv.values, np.array(q) * 100, axis=axis)
np.testing.assert_allclose(actual.values, expected)
if is_scalar(q):
assert "quantile" not in actual.dims
else:
assert "quantile" in actual.dims

assert actual.attrs == self.attrs

def test_reduce_keep_attrs(self):
# Test dropped attrs
Expand Down
28 changes: 16 additions & 12 deletions xarray/tests/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
from xarray.core.common import duck_array_ops, full_like
from xarray.core.npcompat import IS_NEP18_ACTIVE
from xarray.core.pycompat import integer_types
from xarray.core.utils import is_scalar

from . import (
InaccessibleArray,
Expand Down Expand Up @@ -4575,21 +4576,24 @@ def test_reduce_keepdims(self):
)
assert_identical(expected, actual)

def test_quantile(self):

@pytest.mark.parametrize("q", [0.25, [0.50], [0.25, 0.75]])
def test_quantile(self, q):
ds = create_test_data(seed=123)

for q in [0.25, [0.50], [0.25, 0.75]]:
for dim in [None, "dim1", ["dim1"]]:
ds_quantile = ds.quantile(q, dim=dim)
assert "quantile" in ds_quantile
for var, dar in ds.data_vars.items():
assert var in ds_quantile
assert_identical(ds_quantile[var], dar.quantile(q, dim=dim))
dim = ["dim1", "dim2"]
for dim in [None, "dim1", ["dim1"]]:
ds_quantile = ds.quantile(q, dim=dim)
assert "dim3" in ds_quantile.dims
assert all(d not in ds_quantile.dims for d in dim)
if is_scalar(q):
assert "quantile" not in ds_quantile.dims
else:
assert "quantile" in ds_quantile.dims

for var, dar in ds.data_vars.items():
assert var in ds_quantile
assert_identical(ds_quantile[var], dar.quantile(q, dim=dim))
dim = ["dim1", "dim2"]
ds_quantile = ds.quantile(q, dim=dim)
assert "dim3" in ds_quantile.dims
assert all(d not in ds_quantile.dims for d in dim)

@requires_bottleneck
def test_rank(self):
Expand Down
33 changes: 21 additions & 12 deletions xarray/tests/test_variable.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
PandasIndexAdapter,
VectorizedIndexer,
)
from xarray.core.pycompat import dask_array_type
from xarray.core.utils import NDArrayMixin
from xarray.core.variable import as_compatible_data, as_variable
from xarray.tests import requires_bottleneck
Expand Down Expand Up @@ -1492,23 +1493,31 @@ def test_reduce(self):
with pytest.warns(DeprecationWarning, match="allow_lazy is deprecated"):
v.mean(dim="x", allow_lazy=False)

def test_quantile(self):
@pytest.mark.parametrize("q", [0.25, [0.50], [0.25, 0.75]])
@pytest.mark.parametrize(
"axis, dim", zip([None, 0, [0], [0, 1]], [None, "x", ["x"], ["x", "y"]])
)
def test_quantile(self, q, axis, dim):
v = Variable(["x", "y"], self.d)
for q in [0.25, [0.50], [0.25, 0.75]]:
for axis, dim in zip(
[None, 0, [0], [0, 1]], [None, "x", ["x"], ["x", "y"]]
):
actual = v.quantile(q, dim=dim)
actual = v.quantile(q, dim=dim)
expected = np.nanpercentile(self.d, np.array(q) * 100, axis=axis)
np.testing.assert_allclose(actual.values, expected)

expected = np.nanpercentile(self.d, np.array(q) * 100, axis=axis)
np.testing.assert_allclose(actual.values, expected)
@requires_dask
@pytest.mark.parametrize("q", [0.25, [0.50], [0.25, 0.75]])
@pytest.mark.parametrize("axis, dim", [[1, "y"], [[1], ["y"]]])
def test_quantile_dask(self, q, axis, dim):
v = Variable(["x", "y"], self.d).chunk({"x": 2})
actual = v.quantile(q, dim=dim)
assert isinstance(actual.data, dask_array_type)
expected = np.nanpercentile(self.d, np.array(q) * 100, axis=axis)
np.testing.assert_allclose(actual.values, expected)

@requires_dask
def test_quantile_dask_raises(self):
# regression for GH1524
v = Variable(["x", "y"], self.d).chunk(2)
def test_quantile_chunked_dim_error(self):
v = Variable(["x", "y"], self.d).chunk({"x": 2})

with raises_regex(TypeError, "arrays stored as dask"):
with raises_regex(ValueError, "dimension 'x'"):
v.quantile(0.5, dim="x")

@requires_dask
Expand Down