Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make argmin/max work lazy with dask #3244

Merged
merged 8 commits into from
Sep 6, 2019
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,8 @@ Bug fixes
- Fix error that arises when using open_mfdataset on a series of netcdf files
having differing values for a variable attribute of type list. (:issue:`3034`)
By `Hasan Ahmad <https://github.com/HasanAhmadQ7>`_.
- :py:meth:`~xarray.DataArray.argmax` and :py:meth:`~xarray.DataArray.argmin` did cause
dask to compute (:issue:`3237`). By `Ulrich Herter <https://github.com/ulijh>`_.

.. _whats-new.0.12.3:

Expand Down
25 changes: 4 additions & 21 deletions xarray/core/nanops.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,35 +91,18 @@ def nanargmin(a, axis=None):
fill_value = dtypes.get_pos_infinity(a.dtype)
if a.dtype.kind == "O":
return _nan_argminmax_object("argmin", fill_value, a, axis=axis)
a, mask = _replace_nan(a, fill_value)
if isinstance(a, dask_array_type):
res = dask_array.argmin(a, axis=axis)
else:
res = np.argmin(a, axis=axis)

if mask is not None:
mask = mask.all(axis=axis)
if mask.any():
raise ValueError("All-NaN slice encountered")
return res
module = dask_array if isinstance(a, dask_array_type) else nputils
return module.nanargmin(a, axis=axis)


def nanargmax(a, axis=None):
fill_value = dtypes.get_neg_infinity(a.dtype)
if a.dtype.kind == "O":
return _nan_argminmax_object("argmax", fill_value, a, axis=axis)

a, mask = _replace_nan(a, fill_value)
if isinstance(a, dask_array_type):
res = dask_array.argmax(a, axis=axis)
else:
res = np.argmax(a, axis=axis)

if mask is not None:
mask = mask.all(axis=axis)
if mask.any():
raise ValueError("All-NaN slice encountered")
return res
module = dask_array if isinstance(a, dask_array_type) else nputils
return module.nanargmax(a, axis=axis)


def nansum(a, axis=None, dtype=None, out=None, min_count=None):
Expand Down
2 changes: 2 additions & 0 deletions xarray/core/nputils.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,3 +236,5 @@ def f(values, axis=None, **kwargs):
nanprod = _create_bottleneck_method("nanprod")
nancumsum = _create_bottleneck_method("nancumsum")
nancumprod = _create_bottleneck_method("nancumprod")
nanargmin = _create_bottleneck_method("nanargmin")
nanargmax = _create_bottleneck_method("nanargmax")
57 changes: 44 additions & 13 deletions xarray/tests/test_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,43 @@
dd = pytest.importorskip("dask.dataframe")


class CountingScheduler:
""" Simple dask scheduler counting the number of computes.

Reference: https://stackoverflow.com/questions/53289286/ """

def __init__(self, max_computes=0):
self.total_computes = 0
self.max_computes = max_computes

def __call__(self, dsk, keys, **kwargs):
self.total_computes += 1
if self.total_computes > self.max_computes:
raise RuntimeError(
"To many computes. Total: %d > max: %d."
% (self.total_computes, self.max_computes)
)
return dask.get(dsk, keys, **kwargs)


def _set_dask_scheduler(scheduler):
if LooseVersion(dask.__version__) >= LooseVersion("0.18.0"):
return dask.config.set(scheduler=scheduler)
return dask.set_options(get=scheduler)


def test_counting_scheduler():
data = da.from_array(np.random.RandomState(0).randn(4, 6), chunks=(2, 2))
sched = CountingScheduler(0)
with raises_regex(RuntimeError, "To many computes"):
with _set_dask_scheduler(sched):
data.compute()
assert sched.total_computes == 1


class DaskTestCase:
def assertLazyAnd(self, expected, actual, test):

with (
dask.config.set(scheduler="single-threaded")
if LooseVersion(dask.__version__) >= LooseVersion("0.18.0")
else dask.set_options(get=dask.get)
):
with _set_dask_scheduler(CountingScheduler(1)):
test(actual, expected)

if isinstance(actual, Dataset):
Expand Down Expand Up @@ -172,13 +201,15 @@ def test_pickle(self):
def test_reduce(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndAllClose(u.mean(), v.mean())
self.assertLazyAndAllClose(u.std(), v.std())
self.assertLazyAndAllClose(u.argmax(dim="x"), v.argmax(dim="x"))
self.assertLazyAndAllClose((u > 1).any(), (v > 1).any())
self.assertLazyAndAllClose((u < 1).all("x"), (v < 1).all("x"))
with raises_regex(NotImplementedError, "dask"):
v.median()
with _set_dask_scheduler(CountingScheduler(0)):
# None of the methods should trigger compute at this stage.
self.assertLazyAndAllClose(u.mean(), v.mean())
self.assertLazyAndAllClose(u.std(), v.std())
self.assertLazyAndAllClose(u.argmax(dim="x"), v.argmax(dim="x"))
self.assertLazyAndAllClose((u > 1).any(), (v > 1).any())
self.assertLazyAndAllClose((u < 1).all("x"), (v < 1).all("x"))
with raises_regex(NotImplementedError, "dask"):
v.median()

def test_missing_values(self):
values = np.array([0, 1, np.nan, 3])
Expand Down